Регистрацию гравитационных волн поставили на поток
Коллаборация LIGO сообщила о регистрации гравитационных волн в третий раз.
Разумеется, первое обнаружение гравитационных волн, о котором было сообщено в начале 2016 года – более знаковое событие, вошедшее в историю физики, но и третья их регистрация, подробности которой описаны в новой статье в журнале Physical Review Letters, тоже по своему значима.
Она означает, что детекторы гравитационных волн становятся стабильным инструментом исследования Вселенной, в котором принимают участие и два научных коллектива из России: группы физического факультета Московского государственного университета имени М.В. Ломоносова и Института прикладной физики РАН (Нижний Новгород).
В течение большей части прошлого года детекторы LIGO были отключены для обновления. Второй цикл наблюдений начался 30 ноября 2016 года и продолжается по сей день. Описанный сигнал зафиксирован 4 января 2017 года. Как и в первых двух случаях, гравитационные волны были порождены столкнувшимися черными дырами. Исследователи уверены в этом на 99,997%. Однако в данном случае это событие произошло примерно в два раза дальше, на расстоянии около 3 миллиардов световых лет.Масса и другие параметры черных дыр определяются по форме принятого гравитационного сигнала, который сравнивается с теоретическими моделями. По частоте их вращения можно так же оценить расстояние между ними, а значит, и размеры. Анализ показал, что средние массы столкнувшихся черных дыр составляли 31,2 и 19,4 солнечных масс, их диаметры порядка 190 км и 115 км. В результате слияния образовалась новая черная дыра с массой около 49 солнечных масс и диаметром 280 км.
Энергия, выделившаяся при этом слиянии, превысила световую энергию, излучаемую за это же время всеми звездами и галактиками Вселенной. Вся эта энергия была выпущена в мгновение ока, всего за 0,12 секунды. В момент столкновения черные дыры вращались вокруг друг друга со скоростью около 0,6 скорости света!
Два детектора в США зафиксировали сигналы, между которыми есть небольшой временной сдвиг, около 3 миллисекунд, который дает приблизительную информацию о направлении, откуда пришел этот сигнал. Возможное местоположение его источника на небе занимает 1200 квадратных градусов (3% неба). По площади это соответствует 6000 дискам полной Луны. LIGO имеет партнерские отношения с 77 обсерваториями по всему миру, в том числе двумя на орбите, которые должны теперь попытаться обнаружить место слияния черных дыр своими инструментами.
Особенность нового исследования в пристальном внимании к процессу собственного вращения черных дыр. Они могут вращаться и вокруг своей оси, и относительно друг друга, и около общего центра масс. Грубо говоря, они могут вращаться как угодно. Теоретики LIGO научились более точно определять направление собственного вращения (спин) черных дыр.
И в этом третьем событии анализ сигналов показал , что с большой вероятностью у столкнувшейся пары черных дыр направления собственного вращения не совпадали, то есть они вращались в разных направлениях. Более строго можно сказать, что по крайней мере у одной черной дыры из пары собственный момент вращения (спин) не совпадает по направлению с полным моментом орбитального движения пары.
Это представляет большой интерес, поскольку позволяет судить о том, как возникла эта пара. Есть две основные модели, объясняющие, как могут возникнуть двойные черные дыры. Первая модель предполагает, что черные дыры рождаются из двойной звезды, после того как обе звезды в паре взорвутся и коллапсируют. В этом случае следует ожидать, что вращения звезд будут согласованы с орбитальным движением.
По второй модели черные дыры формируются в плотном звездном скоплении отдельно друг от друга, а уже затем образуют двойную систему. В этом случае они могут вращаться в любом направлении относительно друг друга и орбитального движения. Результаты работы свидетельствуют в пользу второго варианта, в пользу гипотезы образования черных дыр далеко друг от друга.
Еще один вопрос, рассмотренный в исследовании, это проверка справедливости современной теории гравитации – Общей теории относительности (ОТО). В соответствии с ней скорость гравитационных волн должна быть равна скорости света независимо от частоты, другими словами, они не обладают дисперсией - зависимостью скорости распространения волн от их частоты.
Частоты гравитационных волн, зарегистрированных в третьем событии, лежат в диапазоне примерно от 30 до 350 Гц. Авторы работы сообщают, что гравитационные волны с разными частотами в исследуемом диапазоне распространяются от своего источника до Земли с одной и той же скоростью, скоростью света, и дисперсия отсутствует. Они не видят даже небольшого нарушения. Таким образом, в пределах точности наблюдений общая теория относительности справедлива..
Теперь исследователи ждут регистраций гравитационных волн не только от слияния черных дыр, но и нейтронных звезд и других источников, сигнал от которых значительно слабее. Они надеются, что по мере увеличения чувствительности детекторов, над которым сейчас ведутся работы, такие события будут происходить чаще. В частности, в исследованиях, направленных на увеличение чувствительности гравитационных антенн, участвуют физики МГУ.
Сейчас их основные усилия направлены на разработку криогенных гравитационно-волновых детекторов нового поколения и на использование новых методов квантовых измерений. Старт следующего цикла наблюдений запланирован на конец 2018 года.
По материалам коллаборации LIGO и МГУ