№01 январь 2025

Портал функционирует при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций.

Цианобактерии готовятся к холодам заранее

По изменению светового дня цианобактерии предчувствуют скорые холода и меняют химический состав собственных мембран, чтобы те не стали слишком вязкими.

Живые существа, которым выпало жить в сезонном климате, загодя готовятся к неблагоприятным условиям. И касается это не только медведей, жиреющих к зиме, чтобы было на что жить во время спячки, и не только деревьев, сбрасывающих листья осенью, но и одноклеточных организмов. В недавней статье в Science сотрудники Университета Вандербильта пишут о том, что сине-зелёные водоросли, или, если использовать более корректное называние, цианобактерии изменяют собственные мембраны ввиду грядущих холодов.

Цианобактерии рода Nostoc. (Фото: Christophe Quintin / Flickr.com

Клеточные мембраны состоят из липидов, в которые погружены разнообразные белки. Они не просто погружены в липиды, они плавают по липидному «морю», взаимодействуя друг с другом и с молекулами по обе стороны мембраны. Работа мембранных белков и в целом самочувствие клетки зависит от состояния мембран, а состояние мембран зависит от липидного состава. Температура здесь  – один из главных факторов: вязкость липидов падает с понижением температуры, так что мембрана на холоду должна застывать. Но разные по химическому строению липиды по-разному чувствительны к низким температурам. Есть липиды насыщенные – в их состав входят насыщенные жирные кислоты, у которых атомы углерода соединены друг с другом одинарной связью; и есть липиды ненасыщенные – в их жирных кислотах встречаются пары атомов углерода с двойной связью между ними. И, например, сливочное масло, в котором преобладают насыщенные жирные кислоты, будет относительно твёрдым и при комнатной температуре, а растительное масло, в котором преобладают ненасыщенные жирные кислоты, останется жидким даже в холодильнике.

Исследователи оценивали, что происходит с цианобактериями, когда их сразу вынуждали расти при температуре около нуля, и когда им просто сокращали световой день, оставляя до поры до времени в тепле. Как можно догадаться, в мембранах цианобактерий становилось больше липидов с ненасыщенными жирными кислотами, чтобы мембраны не застывали. Однако изменения в составе мембран происходили даже тогда, когда бактерии не охлаждали, а просто устраивали им более короткий день. Уменьшение светового дня указывает на приближение зимы, и цианобактерии это вполне понимали.

Когда речь заходит о чём-то, что зависит от смены дня и ночи, то тут явно не обходится без биологических часов – комплекса генов и белков, которые влияют на множество биохимических, клеточных, физиологических процессов. Биологические часы есть почти у всех живых организмов, и идти они могут даже в постоянной темноте, то есть их «пружина» от света не зависит. Но свет нужен им для корректировки хода, чтобы биохимические, клеточные и прочие процессы были согласованы с естественной сменой дня и ночи. Очевидно, что такая корректировка особенно важна для организмов, очень сильно зависящих от света – то есть для растений, водорослей и бактерий, способных к фотосинтезу, вроде цианобактерий. Насчёт цианобактерий долгое время сомневались, что эти одноклеточные, у которых за сутки сменяется пять–шесть поколений, способны отслеживать суточный цикл. Тем не менее, биологические суточные часы есть и у них, причём достаточно хорошо изученные на уровне генов и белков. Чтобы убедиться, что перестройки в липидном составе подчиняются именно аппарату суточных ритмов, исследователи отключали соответствующие гены у цианобактерий, и мембраны у них при уменьшении светового дня действительно переставали изменяться.

Изменения касались не только мембран. Когда день для бактерий становился короче, у них повышалась активность генов, связанных с метаболизмом – вероятно, чтобы скомпенсировать замедление обмена веществ из-за недостатка света и будущего понижения температуры. Увеличение светового дня, с другой стороны, стимулировало активность генов, которые должны защищать клетку от повреждений, связанных с избытком солнечной энергии (фотосинтезирующие организмы тоже могут страдать от лишнего света). В целом, несмотря на одноклеточность, цианобактерии способны довольно сильно менять собственную физиологию, предчувствуя сезонные перемены в климате, и, как было сказано, этими предчувствиями они обязаны аппарату биологических часов. В перспективе исследователи хотят проверить, как реагируют на изменения в световом дне цианобактерии в естественной среде (те данные, что есть, получили в лабораторных экспериментах), а также было бы интересно узнать, есть ли похожие способности у других бактерий – например, у тех, которые живут в почве и от которых зависит благополучие растений.

Автор: Кирилл Стасевич


Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее