Преимущество резонансных астероидов в том, что они возвращаются в окрестность Земли ежегодно. Это даёт возможность хоть каждый год отправлять космический аппарат c посадкой на астероид и доставлять на Землю образцы грунта, причём на возврат спускаемого аппарата на Землю почти не требуется тратить топливо. В этом плане астероид на резонансной орбите имеет преимущества относительно астероида на орбите, подобной лунной, как планируется в проекте Keck, поскольку он для возвращения требуют заметный расход топлива. Для беспилотных миссий это может стать решающим, но для пилотируемых полётов, когда необходимо обеспечить как можно более быстрое возвращение аппарата на Землю в аварийной ситуации (в течение недели или даже раньше), преимущество может оказаться на стороне проекта ARM.
С другой стороны, ежегодное возвращение резонансных астероидов к Земле позволяет периодически проводить гравитационные манёвры, всякий раз изменяя их орбиту для оптимизации условий исследований. Орбита при этом должна оставаться резонансной, что несложно осуществить, совершая многократные гравитационные манёвры. Используя такой подход, можно перевести астероид на орбиту, идентичную земной, но немного наклонённую к её плоскости (к эклиптике). Тогда астероид станет сближаться с Землёй дважды в год. В семейство орбит, получаемых в результате последовательности гравитационных манёвров, входит орбита, плоскость которой лежит в эклиптике, но имеет очень больший эксцентриситет и, как у астероида 2012 VE77, достигает орбиты Марса.
Если далее развить технологию гравитационных манёвров у планет, включающую построение резонансных орбит, то возникает идея использовать Луну. Дело в том, что гравитационный манёвр у планеты в чистом виде не позволяет захватить объект на орбиту спутника, поскольку при облёте планеты энергия его относительного движения не изменяется. Если же при этом он облетит естественный спутник планеты (Луну), то его энергию можно уменьшить. Проблема в том, что уменьшение должно быть достаточным для перехода на орбиту спутника, то есть начальная скорость относительно планеты должна быть невелика. Если это требование не выполнено, объект покинет окрестность Земли навсегда. Но если выбрать геометрию комбинированного манёвра так, что в результате астероид останется на резонансной орбите, то через год можно повторить манёвр. Таким образом, существует возможность захватить астероид на орбиту спутника Земли, применив гравитационные манёвры у Земли с сохранением условия резонанса и координированный облёт Луны.
Очевидно, что отдельно взятые примеры, подтверждающие возможность реализации концепции управления движением астероидов с помощью гравитационных манёвров, не гарантируют решение проблемы астероидно-кометной опасности для любого небесного объекта, угрожающего столкновением с Землёй. Может случиться, что в конкретном случае не найдётся подходящего астероида, который можно на него направить. Но, как показывают последние результаты расчётов, проведённые с учётом самых «свежих» каталогизированных астероидов, при предельно допустимом импульсе скорости, необходимом для перевода астероида в окрестность планеты, равном 40 м/с, число подходящих астероидов составляет 29, 193 и 72 для Венеры, Земли и Марса соответственно. Они входят в список небесных тел, движением которых можно управлять средствами современной ракетно-космической техники. Список стремительно пополняется, поскольку в настоящее время открывают в среднем от двух до пяти астероидов в день. Так, за период с 1 по 21 ноября 2014 года открыто 58 околоземных астероидов. До сих пор на движение естественных небесных тел мы не могли влиять, но наступает новая фаза развития цивилизации, когда это становится возможным.