При сгорании жидкого водорода образуется в 2,8 раза больше тепла, чем при сгорании такой же массы авиационного керосина. Но для керосина требуется лишь обычный топливный бак, тогда как водород надо брать на борт либо в сильно сжатом виде (для чего нужны тяжёлые толстостенные баллоны, выдерживающие давление как минимум в 300 атмосфер), либо в виде криогенной жидкости с температурой –253°С. Авиагорючее занимает около 78% общего веса полных баков самолёта, а жидкий водород будет составлять всего 18% веса своего резервуара. Чтобы имело смысл с ним возиться, этот показатель надо довести хотя бы до 28%. Зато получать водород можно хоть в каждом аэропорту, требуется лишь вода и электричество.
Хорошо, мы запасли в том или ином виде водород и заправили им самолёт. Годится ли водород как горючее? Да, но современные турбовинтовые авиадвигатели потребуют некоторой переделки. Другой, более сложный, вариант — получать в топливных элементах электроэнергию из водорода (см. «Наука и жизнь» № 1, 2006 г., статья «Будущее принадлежит водородной энергетике»), которая будет вращать пропеллеры.
Обычно говорят об экологической безопасности водородного горючего: ведь при сжигании этого газа возникают лишь водяные пары. Но нельзя забывать, что в воздухе много азота, и сгорание водорода на воздухе даёт также окислы азота, то есть в итоге материал для кислотного дождя. Если водородная авиация станет массовой, это может вызвать проблемы.
Несколько слов о топливных элементах. В этих устройствах водород не сгорает, а окисляется в электрохимическом процессе при сравнительно низкой температуре (в некоторых конструкциях при 10—100°С, в других и до 500°С), производя электроэнергию и воду. Однако современные газотурбины дают 3,7 кВт на 1 кг своего веса, а лучшие топливные элементы — менее 2 кВт. Но прогресс заметен: 15 лет назад их рекорд составлял всего 0,3 кВт на кг. Впрочем, специалисты говорят, что вряд ли в обозримом будущем появятся большие самолёты на водородных топливных элементах.
Но инженеры европейского концерна «Эрбас» разработали на будущее три концепции гибридно-водородных авиалайнеров с вместимостью до 200 пассажиров и дальностью полёта до 3700 км (см. фото). Водород будет сжигаться в двигателях, а часть его поступит в топливные элементы, чтобы участвовать в электропитании систем самолёта. Правда, воплотить эти концепции планируется к 2035 году.
С переходом на водород как горючее будет ещё много хлопот. Авиационный керосин сравнительно безопасен, и с ним привыкли работать, а для заправки самолётов водородом придётся разработать совершенно новые системы и протоколы безопасности.
Тем временем японцы строят первое в мире судно — перевозчик жидкого водорода. Оно должно вступить в строй весной 2021 года и будет возить водород из Австралии в Японию.
Кстати, использование водорода как топлива предсказывал ещё Жюль Верн: «Я думаю, что воду когда-нибудь будут употреблять как топливо, что водород и кислород, которые входят в её состав, будут использованы вместе или поодиночке и явятся неисчерпаемым источником света и тепла, значительно более интенсивным, чем уголь. Придёт день, когда котлы паровозов, пароходов и тендеры локомотивов будут вместо угля нагружены сжатыми газами, и они станут гореть в топках» («Таинственный остров», 1874—1875 годы). Правда, в наши дни только 4% водорода добывают электролизом из воды, а в основном его получают из природного газа.