Задолго до появления вычислительных машин математики придумали целый ряд устройств, облегчающих вычисления. К ним относятся и так называемые палочки Непера — старинный счётный прибор, изобретённый Джоном Непером и описанный в его книге, вышедшей в 1617 году (см. статью Н. Карпушиной
«Решётчатое умножение», «Наука и жизнь» № 2, 2011 г.). Палочки Непера позволяли быстро получать произведение многозначного числа на однозначное. Но при их использовании во многих разрядах приходилось складывать числа в уме, часто с учётом переноса из разряда справа, и запоминать сумму, что могло привести к ошибочному результату. В 80-х годах XIX века французский инженер Анри Женай по предложению математика Эдуарда Люкá автоматизировал такие вычисления. Прибор получил название «Бруски Женая—Люка».
Он состоял из ряда узких деревянных брусков размером 18 x 1,2 x 1 см, на длинных гранях которых были изображены таблички с цифрами и тёмными треугольниками. Как же происходило умножение? Прежде чем ответить на этот вопрос, объясним, почему цифры на брусках расположены именно в таком порядке и зачем нужны тёмные треугольники.
Напомним, что при умножении многозначного числа (множимого) на однозначное число (множитель) традиционным методом в столбик мы последовательно находим произведение каждой цифры множимого, начиная с последней, на множитель. Для каждой цифры записываем сумму количества единиц в произведении с числом десятков (если оно больше нуля), которое переносится из соседнего правого разряда...