№01 январь 2025

Портал функционирует при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций.

ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ

Доктор физико-математических наук А. ДМИТРИЕВ, ведущий научный сотрудник Института радиотехники и электроники РАН (Москва).

Динамический (детерминированный) хаос и фракталы - понятия, вошедшие в научную картину мира сравнительно недавно, лишь в последней четверти ХХ века. С тех пор интерес к ним не угасает не только в кругу специалистов - физиков, математиков, биологов и т. д., но и среди людей, далеких от науки. Исследования, связанные с фракталами и детерминированным хаосом, меняют многие привычные представления об окружающем нас мире. Причем не о мире микрообъектов, где глаз человечес кий бессилен без специальной техники, и не о явлениях космического масштаба, а о самых обычных предметах: облаках, реках, деревьях, горах, травах. Фракталы заставляют пересмотреть наши взгляды на геометрические свойства природных и искусственных объектов, а динамический хаос вносит радикальные изменения в понимание того, как эти объекты могут вести себя во времени. Разрабатываемые на основе этих понятий теории открывают новые возможности в различных областях знаний, в том числе в информационных и коммуникационных технологиях.

Наука и жизнь // Иллюстрации
Деревья, как и многие другие объекты в природе, имеют фрактальное строение.
Наука и жизнь // Иллюстрации
Крымская сосна (слева) и искусственная фрактальная структура (справа) удивительно похожи.
Реакция колебательного контура на внешний периодический сигнал: а - периодический отклик линейного контура, б - хаотический отклик нелинейного контура. Роль нелинейной емкости выполняет p-n-переход полупроводникового диода.
Движение динамической системы можно наглядно изобразить траекторией на фазовой плоскости, где оси X и Y - обобщенные координата и импульс частицы. а - колебания затухающего маятника.
Примеры систем с хаосом.
Наука и жизнь // Иллюстрации
Основные способы синхронизации хаотических систем: а - через глобальные связи: каждая система влияет на каждую; б - с помощью пейсмейкера, или "ритмоводителя": одна из систем задает ритм всем остальным элементам.
Наука и жизнь // Иллюстрации
Пример записи информации с помощью детерминированного хаоса.
Сотрудники лаборатории ИнформХаос Института радиотехники и электроники РАН А. И. Панас и С. О. Старков проводят эксперимент по скоростной прямохаотической передаче данных в СВЧ-диапазоне (вверху).
Так выглядят хаотические СВЧ-колебания, позволяющие увеличить скорость передачи информации в десятки раз по сравнению с традиционными системами.

Что такое фрактал?

Фракталы вокруг нас повсюду, и в очертаниях гор, и в извилистой линии морского берега. Некоторые из фракталов непрерывно меняются, подобно движущимся облакам или мерцающему пламени, в то время как другие, подобно деревьям или нашим сосудистым системам, сохраняют структуру, приобретенную в процессе эволюции.
Х. О. Пайген и П. Х. Рихтер.

Геометрия, которую мы изучали в школе и которой пользуемся в повседневной жизни, восходит к Эвклиду (примерно 300 лет до нашей эры). Треугольники, квадраты, круги, параллелограммы, параллелепипеды, пирамиды, шары, призмы - типичные объекты, рассматриваемые классической геометрией. Предметы, созданные руками человека, обычно включают эти фигуры или их фрагменты. Однако в природе они встречаются не так уж часто. Действительно, похожи ли, например, лесные красавицы ели на какой-либо из перечисленных предметов или их комбинацию? Легко заметить, что в отличие от форм Эвклида природные объекты не обладают гладкостью, их края изломаны, зазубрены, поверхности шероховаты, изъедены трещинами, ходами и отверстиями. "Почему геометрию часто называют холодной и сухой? Одна из причин заключается в ее неспособности описать форму облака, горы, дерева или берега моря. Облака - это не сферы, горы - не конусы, линии берега - это не окружности, и кора не является гладкой, и молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности", - этими словами начинается "Фрактальная геометрия природы", написанная Бенуа Мандельбротом. Именно он в 1975 году впервые ввел понятие фрактала - от латинского слова fractus, сломанный камень, расколотый и нерегулярный. Оказывается, почти все природные образования имеют фрактальную структуру. Что это значит? Если посмотреть на фрактальный объект в целом, затем на его часть в увеличенном масштабе, потом на часть этой части и т. п., то нетрудно увидеть, что они выглядят одинаково. Фракталы самоподобны - их форма воспроизводится на различных масштабах.

Открытие фракталов произвело революцию не только в геометрии, но и в физике, химии, биологии. Фрактальные алгоритмы нашли применение и в информационных технологиях, например, для синтеза трехмерных компьютерных изображений природных ландшафтов, для сжатия (компрессии) данных (см. "Наука и жизнь" № 4, 1994 г.; №№ 8, 12, 1995 г.; № 7, 1998 г.). Далее мы убедимся, что понятие фрактала тесно связано с еще одним не менее любопытным явлением - хаосом в динамических системах.

Детерминированность и хаос

ХАОС (греч. caos) - в греческой мифологии беспредельная первобытная масса,
из которой образовалось впоследствии
все существующее. В переносном смысле - беспорядок, неразбериха.

Энциклопедия
Кирилла и Мефодия

Когда говорят о детерминированности некой системы, имеют в виду, что ее поведение характеризуется однозначной причинно-следственной связью. То есть, зная начальные условия и закон движения системы, можно точно предсказать ее будущее. Именно такое представление о движении во Вселенной характерно для классической, ньютоновской динамики. Хаос же, напротив, подразумевает беспорядочный, случайный процесс, когда ход событий нельзя ни предсказать, ни воспроизвести. Что же представляет собой детермини рованный хаос - казалось бы, невозможное объединение двух противоположных понятий?

Начнем с простого опыта. Шарик, подвешенный на нитке, отклоняют от вертикали и отпускают. Возникают колебания. Если шарик отклонили немного, то его движение описывается линейными уравнениями. Если отклонение сделать достаточно большим - уравнения будут уже нелинейными. Что при этом изменится? В первом случае частота колебаний (и, соответственно, период) не зависит от степени начального отклонения. Во втором - такая зависимость имеет место. Полный аналог механического маятника как колебательной системы - колебательный контур, или "электрический маятник". В простейшем случае он состоит из катушки индуктивности, конденсатора (емкости) и резистора (сопротивления). Если все три указанных элемента линейны, то колебания в контуре эквивалентны колебаниям линейного маятника. Но если, к примеру, емкость нелинейна, период колебаний будет зависеть от их амплитуды.

Динамика колебательного контура определяется двумя переменными, например током в контуре и напряжением на емкости. Если откладывать эти величины вдоль осей Х и Y, то каждому состоянию системы будет соответствовать определенная точка на полученной координатной плоскости. Такую плоскость называют фазовой. (Соответственно, если динамическая система определяется n переменными, то вместо двумерной фазовой плоскости ей можно поставить в соответствие n-мерное фазовое пространство .)

Теперь начнем воздействовать на наши маятники внешним периодическим сигналом. Реакция линейной и нелинейной систем будет различной. В первом случае постепенно установятся регулярные периодические колебания с той же частотой, что и частота вынуждающего сигнала. На фазовой плоскости такому движению соответствует замкнутая кривая, называемая аттрактором (от английского глагола to attract - притягивать), - множество траекторий, характеризующих установившийся процесс. В случае нелинейного маятника могут возникнуть сложные, непериодические колебания, когда траектория на фазовой плоскости не замкнется за сколь угодно долгое время. При этом поведение детерминирован ной системы будет внешне напоминать совершенно случайный процесс - это и есть явление динамического, или детерминированного, хаоса. Образ хаоса в фазовом пространстве - хаотический аттрактор - имеет очень сложную структуру: это фрактал. В силу необычности свойств его называют также странным аттрактором .

Почему же система, развивающаяся по вполне определенным законам, ведет себя хаотически? Влияние посторонних источников шума, а также квантовая вероятность в данном случае ни при чем. Хаос порождается собственной динамикой нелинейной системы - ее свойством экспоненциально быстро разводить сколь угодно близкие траектории. В результате форма траекторий очень сильно зависит от начальных условий. Поясним, что это значит, на примере нелинейного колебательного контура, находящегося под воздействием внешнего периодического сигнала. Внесем в нашу систему небольшое возмущение - изменим немного начальный заряд конденсатора. Тогда колебания в возмущенном и невозмущенном контурах, первоначально практически синхронные, очень скоро станут совершенно разными. Поскольку в реальном физическом эксперименте задать начальные условия можно лишь с конечной точностью, предсказать поведение хаотических систем на длительное время невозможно.

Предсказание будущего

- Из-за такой малости! Из-за бабочки! - закричал Экельс.
Она упала на пол - изящное маленькое создание, способное нарушить равновесие, повалились маленькие костяшки домино... большие костяшки... огромные костяшки, соединенные цепью неисчисли мых лет, составляющих Время.

Р. Бредбери. И грянул гром

Насколько упорядочена наша жизнь? Предопределены ли в ней те или иные события? Что предсказуемо на многие годы вперед, а что не подлежит сколько-нибудь надежному прогнозированию даже на небольшие интервалы времени?

Человеку постоянно приходится сталкиваться как с упорядоченными, так и с неупорядоченными процессами, порождаемыми различными динамическими системами. Мы знаем, что Солнце встает и заходит каждые 24 часа, и так будет продолжаться в течение всей нашей жизни. Вслед за зимой всегда наступает весна, и вряд ли когда-нибудь будет наоборот. Более или менее регулярно функционируют коммунальные службы, снабжающие нас светом и теплом, учреждения и магазины, а также транспортные системы (автобусы, троллейбусы, метро, самолеты, поезда). Нарушения ритмичной работы этих систем вызывают законное возмущение и негодование граждан. Если сбои возникают неоднократно - говорят о хаосе, выражая отрицательное отношение к подобным явлениям.

Но в то же время существуют процессы, хорошо известные своей непредсказуемость ю. Например, подбрасывая монету, мы никогда точно не знаем, что выпадет - "орел" или "решка". Такая непредсказуемость не вызывает тревоги. К гораздо более драматичным последствиям она может привести при игре в рулетку, однако любители испытывать судьбу сознательно идут на этот риск.

Почему одни процессы предсказуемы по своим результатам, а другие нет? Может быть, нам просто не хватает каких-то начальных данных для хорошего прогноза? Надо улучшить знания о начальных условиях - и все будет в порядке, и с монетой и с предсказанием погоды. Сказал же Лаплас: дайте мне начальные условия для всей Вселенной, и я вычислю ее будущее. Лаплас ошибался: ему и его современникам не были известны примеры детерминированных динамических систем, прогноз поведения которых на длительное время нельзя осуществить. Лишь в конце XIX столетия французский математик Анри Пуанкаре впервые почувствовал, что такое возможно. Однако прошло еще три четверти века, прежде чем началась эпоха бурного изучения детерминированного хаоса.

Динамические системы можно условно разделить на два типа. У первых траектории движения устойчивы и не могут быть значительно изменены малыми возмущениями. Такие системы предсказуемы - именно потому мы знаем, что Солнце взойдет завтра, через год и через сто лет. Для определения будущего в этом случае достаточно знать уравнения движения и задать начальные условия. Небольшие изменения в значениях последних приведут лишь к несущественной ошибке в прогнозе.

К другому типу относятся динамические системы, поведение которых неустойчиво, так что любые сколь угодно малые возмущения быстро (в масштабе времени, характерном для этой системы) приводят к кардинальному изменению траектории. Как отметил Пуанкаре в своей работе "Наука и метод" (1908), в неустойчивых системах "совершен но ничтожная причина, ускользающая от нас по своей малости, вызывает значительное действие, которое мы не можем предусмотреть. (...) Предсказание становится невозможным, мы имеем перед собой явление случайное". Таким образом прогнозирование на длительные времена теряет всякий смысл.

Пример с нелинейным колебательным контуром, рассмотренный выше, показывает, что хаотическое поведение с непредсказуемым будущим может иметь место даже в очень простых системах.

Реконструкция прошлого

Итак, прогноз будущего не всегда возможен. А как обстоит дело с прошлым? Всегда ли можно реконструировать ("предсказать", однозначно истолковать) прошлое? Казалось бы, здесь проблем быть не должно. Раз траектории удаляются одна от другой при движении вперед, они должны сближаться при движении назад. Так оно и есть. Однако направлений, по которым может происходить схождение или расхождение траекторий в фазовом пространстве, не одно, а несколько. При движении как вперед, так и назад траектории могут сближаться по одной части направлений, но расходиться по другой.

Прошлое "не предсказывается"? Бред какой-то! Ведь что-то уже произошло. Все известно... Но давайте подумаем. Если бы с реконструкцией прошлого все было так просто, как тогда могло случиться, что для одних Николай II по-прежнему кровавый, а для других святой? И кто все-таки Сталин: гений или злодей? Отвлечемся пока от проблемы, насколько вольны они были принимать те или иные решения, насколько эти решения предопределялись обстоятельствами и каковы могли быть последствия альтернативных решений. Рассмотрим исторический процесс как динамику некоторой гипотетической хаотической системы. Тогда при попытке реконструкции прошлого мы столкнемся с быстро увеличивающимся числом вариантов (траекторий), отвечающих нынешнему состоянию системы. Только один из них соответствует реальному течению событий. Если выбрать не его, а какой-то другой, то получится уже искаженная "версия" истории. На основании чего выбирается правильная траектория ("версия")? Информация, на которую мы можем опереться, - совокупность имеющихся конкретных фактов. Траектории, несовместимые с ними, отбрасываются. В результате при наличии достаточного количества надежных фактов останется одна траектория, определяющая единственную версию истории. Однако даже для недалекого прошлого траекторий может оказаться значительно больше, чем достоверных сведений, - тогда однозначная трактовка исторического процесса уже не может быть произведена. И все это при добросовестном и уважительном отношении к истории и к фактам. Теперь добавьте сюда пристрастия первичных источников, потерю части информации со временем, манипуляции с фактами на этапе интерпретации (замалчивание одних, выпячивание других, фальсификация и др.) - и заменить черное на белое окажется не такой уж сложной задачей. И что интереснее всего, при необходимости те же самые интерпретаторы через некоторое время могут без труда утверждать противоположное. Знакомая картина?

Итак, динамическая природа "непредсказуемости" прошлого сходна с природой непредсказуемости будущего: неустойчивость траекторий динамической системы и быстрое нарастание числа возможных вариантов по мере удаления от точки отсчета. Чтобы реконстру ировать прошлое, кроме самой динамической системы нужна достаточная по количеству и надежная по качеству информация из этого прошлого. Следует отметить, что на разных участках исторического процесса степень его хаотичности различна и может даже падать до нуля (ситуация, когда все существенное предопределено). Естественно, что чем менее хаотична система, тем проще реконструируется ее прошлое.

Управляем ли хаос?

Хаос часто порождает жизнь.
Г. Адамс

На первый взгляд природа хаоса исключает возможность управлять им. В действительности все наоборот: неустойчивость траекторий хаотических систем делает их чрезвычайно чувствительными к управлению.

Пусть, например, требуется перевести систему из одного состояния в другое (переместить траекторию из одной точки фазового пространства в другую). Требуемый результат может быть получен в течение заданного времени путем одного или серии малозаметных, незначительных возмущений параметров системы. Каждое из них лишь слегка изменит траекторию, но через некоторое время накопление и экспоненциальное усиление малых возмущений приведут к существенной коррекции движения. При этом траектория останется на том же хаотическом аттракторе. Таким образом, системы с хаосом демонстрируют одновременно и хорошую управляемость , и удивительную пластичность: чутко реагируя на внешние воздействия, они сохраняют тип движения.

Как считают многие исследователи, именно комбинация этих двух свойств служит причиной того, что хаотическая динамика характерна для поведения многих систем живых организмов. Например, хаотический характер ритма сердца позволяет ему гибко реагировать на изменение физических и эмоциональных нагрузок, подстраиваясь под них. Известно, что регуляризация сердечного ритма приводит через некоторое время к летальному исходу. Одна из причин заключается в том, что сердцу может не хватить "механической прочности" для того, чтобы скомпенсировать внешние возмущения. На самом деле ситуация более сложная. Упорядочение работы сердца служит индикатором снижения хаотичности и в других, связанных с ним системах. Регулярность свидетель ствует об уменьшении сопротивляемости организма случайным воздействиям внешней среды, когда он уже не способен адекватно отследить изменения и достаточно гибко на них отреагировать.

Очевидно, что подобной пластичностью и управляемостью должны обладать любые сложные системы, функционирующие в изменчивой среде. В этом залог их сохранности и успешной эволюции.

От хаоса - к упорядоченности

Как же обеспечивается целостность и устойчивость живых организмов и других сложных систем, если отдельные их части ведут себя хаотически?

Оказывается, кроме хаоса в сложных нелинейных системах возможно и противоположное явление, которое можно было бы назвать антихаосом . В том случае, если хаотические подсистемы связаны друг с другом, может произойти их спонтанное упорядочение ("кристаллизация"), в результате чего они обретут черты единого целого. Простейший вариант такого упорядочения - хаотическая синхронизация , когда все связанные друг с другом подсистемы движутся хотя и хаотически, но одинаково, синхронно. Процессы хаотической синхронизации могут происходить не только в организме животных и человека, но и в более крупных структурах - биоценозах, общественных организациях, государствах, транспортных системах и др.

Чем определяется возможность синхронизации? Во-первых, поведением каждой отдельной подсистемы: чем она хаотичнее, "самостоятельнее" , тем труднее заставить ее "считаться" с другими элементами ансамбля. Во-вторых, суммарной силой связи между подсистемами: ее увеличение подавляет тенденцию к "самостоятельности" и может, в принципе, привести к упорядочению. При этом важно, чтобы связи были глобальными , то есть существовали не только между соседними, но и между отстоящими далеко друг от друга элементами.

В реальных системах, включающих большое число подсистем, связь осуществляется за счет материальных или информационных потоков. Чем они интенсивнее, тем больше шансов, что элементы будут вести себя согласованно, и наоборот. Например, в государстве роль связующих потоков играют транспорт, почта, телефонная связь и др. Поэтому повышение тарифов на эти услуги в том случае, когда оно приводит к уменьшению соответствующих потоков, ослабляет целостность государства и способствует его разрушению.

Из теории хаотической синхронизации следует, что согласованную работу отдельных частей сложной системы может обеспечивать один из ее элементов, называемый пейсмейке ром, или "ритмоводителем". Будучи связан односторонним образом со всеми компонентами системы, он "руководит" их движением, навязывая свой ритм. Если при этом сделать так, что отдельные подсистемы не будут связаны друг с другом, а только с пейсмейкером, - получим случай предельно централизованной системы. В государстве, например, роль "ритмоводителя" выполняет центральная власть и ...средства массовой информации, действующие на всей или значительной части территории страны. Сегодня это в особенности относится к электронным средствам массовой информации, поскольку по мобильности и общему информационному потоку они значительно превосходят остальные. Интуитивно понимая это, центральная власть старается держать СМИ под контролем, а также ограничивает влияние каждого из них в отдельности. В противном случае управлять государством будет уже не она.

Здесь мы коснулись очень важного вопроса. Поскольку средняя сила связей является суммарным параметром, в который входят как материальные связи, так и информационные, то это значит, что ослабление одних из них может быть компенсировано усилением других. Простейший пример - замена реальных товаров на бумажные или даже электронные деньги. В этом случае поставщику, по сути, вместо материального продукта поступает информация об изменении на его счете - и такой обмен его вполне устраивает. Подобным же образом путем биржевых операций ежедневно приобретаются или теряются громадные суммы, которые, в конечном счете, кто-то должен компенсировать реальными продуктами или услугами.

Как может происходить разрушение синхронизованного состояния?

Об одной возможности мы уже упомянули. Это ослабление связей. Другая причина - неадекватное воздействие "ритмоводителя" на ансамбль. Действительно, если "ритм", диктуемый пейсмейкером, будет слишком противоречить естественному поведению компонент системы, то даже при достаточной силе связи ему не удастся навязать ансамблю свою линию поведения. Однако прежнее поведение также не сохранится. В результате синхронизация будет разрушена.

Фрактальность и устойчивость

Мы уже убедились, что теорию динамического хаоса можно применить ко многим системам, в том числе к государству и обществу в целом. А какую роль играет при этом фрактальная структура хаоса? Ведь образ хаоса в фазовом пространстве - странный аттрактор - геометрически представляет собой фрактал. Несмотря на то, что каждая отдельная хаотическая траектория чрезвычайно чувствительна к малейшим возмущениям, странный аттрактор (совокупность всех возможных траекторий) является очень устойчивой структурой. Таким образом, динамический хаос подобен двуликому Янусу: с одной стороны, он проявляет себя как модель беспорядка, а с другой - как стабильность и упорядоченность на разных масштабах.

Если задуматься, то легко увидеть, что в обществе, как и в природе, многие системы построены по принципу фракталов: из малых элементов образуются некоторые комплексы, они в свою очередь служат элементами для более крупных комплексов и т. д. Как, например, организованы жизнеспособные экономические и производственные структуры? Две крайние позиции: крупные транснациональные компании и "мелкий бизнес". Каждая из них в отдельности нежизнеспособна. Большие компании, обладая огромной экономической мощью, малоподвижны и не могут быстро реагировать на изменения в окружающей экономической среде. "Малый бизнес" не способен решать крупные задачи, обеспечивать развитие инфраструктуры. Где же золотая середина? В средних по размеру предприятиях? Отнюдь. Устойчивая экономическая инфраструктура обеспечивается (при необходимой подкачке нужных ресурсов) совокупностью разномасштабных (вот он фрактал!) экономических объектов, образующих пирамиду. У основания ее находится множество мелких компаний и фирм, выше по пирамиде размер предприятий постепенно увеличивается, а их число, соответственно, сокращается, и, наконец, наверху находятся самые крупные компании. Такая структура характерна, например, для экономики США. При этом мелкие предприятия наиболее мобильны: они часто рождаются и умирают, являясь основными поставщиками новых идей и технологий. Нововведения, получившие достаточное развитие, позволяют ряду предприятий вырасти до следующего уровня либо передать (продать) накопленные инновации более крупным компаниям. При достаточной восприимчивости среды такой механизм способен создать новые отрасли промышленности и экономики за несколько лет. Недаром в так называемой "новой экономике" основную массу даже крупных предприятий составляют компании, которые 15-20 лет назад либо вообще не существова ли, либо находились в разряде мелких.

Другой пример. Во времена перестройки много писалось и говорилось о "неправильном" устройстве СССР, в котором государство имело сложную иерархическую структуру, организованную по принципу матрешки. Что было предложено взамен? Каждому народу свою туземную армию, свой язык, свою "элиту", своих племенных вождей. Звучит неплохо. А теперь взгляните, чем обернулась эта идея для многих народов бывшего СССР и Югославии... С точки зрения теории устойчивости, идея однородного устройства российского государства - идея двоечника. Почему? Принцип матрешки - это, по сути, фрактальный принцип, благодаря которому хаотическая система обретает структуру и устойчивость. СССР и Российская империя были построены по принципу фрактальных систем, и это обеспечивало их стабильность как государств. На разных уровнях в общую систему были вкраплены естественные государственные, этнические, территориальные и другие образования с отлаженными механизмами внутреннего функциониро вания, со своими правами и обязанностями.

Хаос порождает информацию

Мы уже установили, что поведение хаотических систем не может быть предсказано на большие интервалы времени. По мере удаления от начальных условий положение траектории становится все более и более неопределенн ым. С точки зрения теории информации это означает, что система сама порождает информацию, причем скорость этого процесса тем выше, чем больше степень хаотичности. Отсюда, согласно теории хаотической синхрониза ции, рассмотренной ранее, следует интересный вывод: чем интенсивнее система генерирует информацию, тем труднее ее синхронизировать, заставить вести себя как-то иначе.

Это правило, видимо, справедливо для любых систем, производящих информацию. Например, если некий творческий коллектив генерирует достаточное количество идей и а активно работает над способами их реализации, ему труднее навязать извне какую-то линию поведения, неадекватную его собственным воззрениям. И наоборот, если при наличии тех же материальных потоков и ресурсов коллектив ведет себя пассивно в информационном смысле, не создает идей или не проводит их в жизнь - иными словами, следует принципу "...тепло и сыро", - тогда его очень легко подчинить.

Хаотические компьютеры

Чего нам не хватает в современных компьютерах? Если живой организм для существования в изменчивой среде должен обладать элементами хаотического поведения, то можно предположить, что и искусственные системы, способные адекватно взаимодей ствовать с меняющимся окружением, должны быть в той или иной степени хаотичными. Современные компьютеры таковыми не являются. Они представляют собой замкнутые системы с очень большим, но конечным числом состояний. Возможно, в будущем на основе динамического хаоса создадут компьютеры нового типа - открытые с термодина мической точки зрения системы, способные адаптироваться к условиям внешней среды.

Однако уже сегодня хаотические алгоритмы могут успешно применять ся в компьютер ных технологиях для хранения, поиска и защиты информации. При решении некоторых задач они оказываются более эффективными по сравнению с традиционными методами. Это относится, в частности, к работе с мультимедийными данными. В отличие от текстов и программ мультимедийная информация требует иного способа организации памяти. Голубая мечта пользователей - возможность поиска мелодии, видеосюжета или нужных фотографий не по их атрибутам (названию директории и файла, дате создания и т. д.), а по содержанию или ассоциации, чтобы, например, по фрагменту мелодии можно было найти и воспроизвести музыкальное произведение. Оказывается, такой ассоциативный поиск можно осуществить с помощью технологий на основе детерминированного хаоса. Каким образом?

Мы уже обсуждали генерацию информации хаотическими системами. Теперь зададимся вопросом: а нельзя ли поставить в соответствие траектории конкретные данные, записанные в виде определенной последовательностей символов? Тогда часть траекторий системы находилась бы во взаимно однозначном соответствии с нашими информаци онными последовательностями. А поскольку каждая траектория - это решение уравнений движения системы при определенных начальных условиях, то и любую последователь ность символов можно было бы восстановить путем решения этих уравнений, задав в качестве начальных условий небольшой ее фрагмент. Таким образом появилась бы возможность ассоциативного поиска информации, то есть поиска по содержанию.

Коллективом сотрудников нашего института были созданы математические модели записи, хранения и поиска информации с помощью траекторий динамических систем с хаосом. Хотя алгоритмы казались очень простыми, их потенциальная информационная емкость значительно превысила объем всей информации, имеющейся в Интернете. Развитие идеи привело к созданию технологии, позволяющей обрабатывать любые типы данных: изображения, текст, цифровую музыку, речь, сигналы и т. д. (Патент РФ 2050072, Патент США 5774587, Патент Канады 2164417).

Пример использования технологии - программный комплекс "Незабудка", предназначен ный для работы с архивами неструктурированной информации как на персональных компьютерах, так и на информационных серверах. "Незабудка" реализована в виде поисковой машины, работающей под стандартными Интернет-броузерами типа Netscape и Explorer. Вся информация в архиве записывается и хранится в виде траекторий хаотической системы. Для поиска необходимых документов пользователь составляет запрос путем набора в произволь ной форме нескольких строк текста, относящегося к содержанию требуемого документа. В ответ система выдаст искомый документ, если входной информации достаточно для его однозначного поиска, либо предложит набор вариантов. При необходимости можно получить и факсимильную копию найденного документа. Наличие ошибок в запросе не оказывает существенного влияния на качество поиска.

Дополнитель ную информацию по комплексу "Незабудка", а также демонстрационную версию программы можно получить по адресу http://www.cplire.ru.

Связь с помощью хаоса

В большинстве современных систем связи в качестве носителя информации используются гармонические колебания. Информационный сигнал в передатчике модулирует эти колебания по амплитуде, частоте или фазе, а в приемнике информация выделяется с помощью обратной операции - демодуляции. Наложение информации на носитель осуществляется либо за счет модуляции уже сформированных гармонических колебаний, либо путем управления параметрами генератора в процессе его работы.

Аналогичным образом можно производить модуляцию хаотического сигнала. Однако возможности здесь значительно шире. Гармонические сигналы имеют всего три управляемые характеристики (амплитуда, фаза и частота). В случае хаотических колебаний даже небольшие вариации в значении параметра одного из элементов источника хаоса приводят к изменениям характера колебаний, которые могут быть надежно зафиксированы приборами. Это означает, что у источников хаоса с изменяемыми параметрами элементов потенциально имеется большой набор схем ввода информационного сигнала в хаотический носитель (схем модуляции). Кроме того, хаос принципиально обладает широким спектром частот, то есть относится к широкополосным сигналам, интерес к которым в радиотехнике традиционно связан с их большей информационной емкостью по сравнению с узкополосными колебаниями. Широкая полоса частот несущей позволяет увеличить скорость передачи информации, а также повысить устойчивость системы к возмущающим факторам. Широкополосные и сверхширокополосные системы связи, основанные на хаосе, имеют потенциальные преимущества перед традиционными системами с широким спектром по таким определяющим параметрам, как простота аппаратной реализации, энергетическая эффективность и скорость передачи информации. Хаотические сигналы могут также служить для маскировки передаваемой по системе связи информации без использования расширения спектра, то есть при совпадении полосы частот информационного и передаваемого сигналов.

Совокупность перечисленных факторов стимулировала активные исследования хаотических коммуникационных систем. В настоящее время уже предложено несколько подходов к расширению спектра информационных сигналов, построению простых по архитекту ре передатчиков и приемников.

Одна из последних идей в этом направлении - так называемые прямохаотические схемы связи. В прямохаотической схеме связи информация вводится в хаотический сигнал, генерируемый непосредственно в радио- или СВЧ-диапазоне длин волн. Информацию вводят либо путем модуляции параметров передатчика, либо за счет ее наложения на хаотический носитель уже после его генерации. Соответственно, извлечение информационного сигнала из хаотического также осуществляют в области высоких или сверхвысоких частот. Оценки показывают, что широкополосные и сверхширокополосные прямохаотические системы связи способны обеспечить скорости передачи информации от десятков мегабит в секунду до нескольких гигабит в секунду. В Институте радиотехники и электроники Российской академии наук уже проведены эксперименты по прямохаотической передаче информации со скоростью до 70 Мбит/сек.

Хаос и компьютерные сети

В коммуникационных схемах хаос может использоваться как носитель информации, как динамический процесс, обеспечивающий преобразование информации к новому виду, и, наконец, как комбинация того и другого. Устройство, преобразующее с помощью хаоса сигнал в передатчике из одного вида в другой, называется хаотическим кодером. С его помощью можно изменять информацию таким образом, что она окажется недоступной стороннему наблюдателю, но в то же время будет легко возвращена к исходному виду специальной динамической системой - хаотическим декодером , находящимся на приемной стороне коммуникационной системы.

В каких процессах может использоваться хаотическое кодирование?

Во-первых, с его помощью можно принципиально по-новому организовать общее информационное пространство, создавая в нем большие открытые группы пользователей - подпространства. В рамках каждой группы вводится свой "язык" общения - единые для всех участников правила, протоколы и другие признаки данной "информационной субкультуры". Для желающих освоить этот "язык" и стать членом сообщества имеются относительно простые средства доступа. В то же время для сторонних наблюдателей участие в подобном обмене будет затруднено. Таким образом, хаотическое кодирование может служить средством структуризации "народонаселения" общего информационного пространства.

Во-вторых, подобным же образом можно организовать многопользовательский доступ к информации. Наличие глобальной сети Интернет и магистральных информационных потоков (Highways) предполагает существование общих протоколов, обеспечивающих прохождение информации по единым каналам. Однако в рамках определенных групп участников (например, в рамках корпоративных сетей) существует острая необходимость доставки информации конкретным потребителям, без разрешения доступа "чужим" участникам. Методы хаотического кодирования являются удобным средством организации таких виртуальных корпоративных сетей. Кроме того, они могут использоваться и непосредственно для обеспечения определенного уровня конфиденциальности информации, переходя в область традиционной криптографии.

Наконец, еще одна функция хаотического кодирования очень актуальна в связи с развитием электронной коммерции и обострением проблемы авторских прав в Интернете. В особенности это касается продажи через сеть мультимедийных товаров (музыки, видео, цифровой фотографии и др.). На основе детерминированного хаоса можно обеспечить такой способ защиты авторских прав и прав на интеллектуальную собственность, как снижение качества информационного продукта при общем доступе. Например, музыкальные треки, закодированные с помощью хаоса, будут распространяться в сети без каких-либо ограничений, так что каждый пользователь сможет воспользоваться ими. Однако при прослушивании без специального декодера качество звука будет низким. В чем смысл такого подхода? Распространяемая информация остается открытой и не подпадает под ограничения, накладываемые применением криптографических методов защиты. Кроме того, потенциальный покупатель имеет возможность ознакомиться с продуктом, а уже потом решить, стоит ли приобретать его высококачественную версию.

Следует отметить, что вышеперечисленные функции хаотического кодирования далеко не исчерпывают потенциальные возможности его применения в современных информационных технологиях. В ходе дальнейшего изучения и развития этой проблематики, по всей видимости, могут открыться новые грани и перспективные области использования.

Таким образом, использование динамического хаоса и фракталов в информационных технологиях не экзотика, как могло показаться еще несколько лет назад, а естествен ный путь для разработки новых подходов к созданию систем, эффективно работающих в изменчивой окружающей среде.

Читайте в любое время

Другие статьи из рубрики «Информационные технологии»

Детальное описание иллюстрации

Деревья, как и многие другие объекты в природе, имеют фрактальное строение. Слева - фотография ели. Справа - искусственная фрактальная структура, генерируемая итерационными уравнениями. По внешнему виду она очень напоминает живое дерево. Отчетливо видна структура ветвей, повторяющаяся во все более и более мелких масштабах.
Движение динамической системы можно наглядно изобразить траекторией на фазовой плоскости, где оси X и Y - обобщенные координата и импульс частицы. а - колебания затухающего маятника. Траектории сходятся к одной точке, отвечающей положению равновесия - полной остановке маятника. б - периодические автоколебания. Все траектории 'наматываются' на предельный цикл - замкнутую кривую, соответствующую установившемуся процессу.
Примеры систем с хаосом. Когда две материальные точки отражаются от шариков, их траектории, первоначально близкие, быстро расходятся (слева). Причина неустойчивости - высокая чувствительность к начальным условиям, вызванная кривизной поверхности шариков. Справа - так называемый рассеивающий бильярд (бильярд Синая). Его криволинейные стенки выполняют ту же роль, что и система шаров слева.
Пример записи информации с помощью детерминированного хаоса. Вверху - фотография Аральского моря, сделанная из космоса. Внизу - функция (оранжевым цветом), на которой записано оцифрованное изображение. Каждой белой точке соответствует несколько пикселов изображения.
Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее