№12 декабрь 2024

Портал функционирует при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций.

Нобелевскую премию по химии дали за флуоресцентную микроскопию высокого разрешения

Работы Штефана Хелля, Эрика Бетцига и Уильяма Мернера позволили разглядеть в клетке отдельные молекулы.

Чтобы рассмотреть клетку и её содержимое, мы должны взять микроскоп. Его принцип работы относительно прост: лучи света проходят через объект, а потом попадают в увеличительные линзы, так что мы можем разглядеть и клетку, и некоторые органеллы внутри неё, например, ядро или митохондрии.

Штефан Хелль. (Фото Max-Planck-Institut für biophysikalische Chemie.)
Эрик Бетциг. (Фото The Howard Hughes Medical Institute.)
Уильям Мернер. (Фото Stanford University.)
Мембрана лизосомы, сфотографированная с помощью обычного флуоресцентного микроскопа (слева) и с помощью метода одномолекулярной микроскопии (по центру и справа). (Фото Eric Betzig et al., Science 313: 1642–1645.)

Но если мы захотим увидеть молекулу белка или ДНК, или рассмотреть крупный надмолекулярный комплекс вроде рибосомы, или вирусную частицу, то обычный световой микроскоп окажется бесполезен. Ещё в 1873 году немецкий физик Эрнст Аббе вывел формулу, полагающую предел возможностям любого светового микроскопа: оказывается, в него нельзя увидеть объект, размером меньше половины длины волны видимого света – то есть меньше 0,2 микрометров.

  Решение, очевидно, состоит в том, чтобы выбрать нечто, что смогло бы заменить видимый свет. Можно использовать пучок электронов, и тогда мы получим электронный микроскоп – в него можно наблюдать вирусы и белковые молекулы, но наблюдаемые объекты при электронной микроскопии попадают в совершенно неестественные условия. Поэтому исключительно удачной оказалась идея Штефана Хелля (Stefan W. Hell) из Института биофизической химии Общества Макса Планка (Германия), которому в начале 90-х голов пришла в голову мысль использовать для визуализации макромолекул и их комплексов стимулированное флуоресцентное излучение.

Суть идеи состояла в том, что объект можно облучить лазерным лучом, который переведёт биологические молекулы в возбуждённое состояние. Из этого состояния они начнут переходить в обычное, освобождаясь от излишков энергии в виде светового излучения – то есть начнётся флуоресценция, и молекулы станут видимыми. Но излучаемые волны будут самой разной длины, и у нас перед глазами будет неопределённое пятно. Чтобы такого не случилось, вместе с возбуждающим лазером объект обрабатывается гасящим лучом, который подавляет все волны, кроме тех, которые обладают нанометровой длиной. Излучение с длиной волны порядка нанометров как раз позволяет отличить одну молекулу от другой.

Метод получил название STED (stimulated emission depletion), и как раз за него Штефан Хелль получил свою часть Нобелевской премии. При STED-микроскопии объект не охватывается лазерным возбуждением сразу целиком, а как бы прорисовывается двумя тонкими пучками лучей (возбудителем и гасителем), потому что чем меньше область, которая флуоресцирует в данный момент времени, тем выше разрешение изображения.

Метод STED впоследствии дополнился так называемой одномолекулярной микроскопией, разработанной в конце XX века независимо двумя другими нынешними лауреатами, Эриком Бетцигом (Eric Betzig) из Института Говарда Хьюза и Уильямом Мернером (William E. Moerner) из Стэнфорда. В большинстве физико-химических методов, полагающихся на флуоресценцию, мы наблюдаем суммарное излучение сразу множества молекул. Уильям Мернер как раз предложил способ, с помощью которого можно наблюдать за излучением одной молекулы. Экспериментируя с зелёным флуоресцентным белком (GFP), он заметил, что у его молекул свечение можно произвольно включать и выключать, манипулируя длиной возбуждающей волны. Включая и выключая флуоресценцию разных молекул GFP, их можно было наблюдать в световой микроскоп, не обращая внимания на нанометровое ограничение Аббе. Целое изображение можно было получить, просто совместив несколько снимков с разными светящимися молекулами в поле наблюдения. Эти данные были дополнены идеями Эрика Бетцига, который предложил увеличить разрешение флуоресцентной микроскопии, использовав белки с разными оптическим свойствами (то есть, грубо говоря, разноцветные).

Совмещение метода возбуждения-гашения Хелля с методом суммы наложений Бетцига и Мернера позволило разработать микроскопию с нанометровым разрешением. С её помощью мы можем наблюдать не только органеллы и их фрагменты, но и взаимодействия молекул друг с другом (если молекулы пометить флуоресцентными белками), что, повторим, далеко не всегда возможно с электронно-микроскопическими методами. Значение метода трудно переоценить, ведь межмолекулярные контакты – это то, на чём стоит молекулярная биология и без чего невозможно, например, ни создание новых лекарств, ни расшифровка генетических механизмов, ни многие другие вещи, лежащие в поле современной науки и техники.

Подготовлено по материалам Нобелевского комитета.

Автор: Кирилл Стасевич


Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее