Три технологии в одной: аэрогель из графена, напечатанный на 3D принтере

Химики придумали новый способ получения аэрографена – необычайно легкого материала с уникальными свойствами

Когда мы говорим о чем-то легком и невесомом, то часто употребляем прилагательное «воздушный». Однако воздух все равно обладает массой, хоть и небольшой – один кубометр воздуха весит немногим более килограмма. Можно ли создать твердый материал, который занимал бы собой, к примеру, кубический метр, но при этом весил бы меньше килограмма? Такую проблему решил еще в начале прошлого века американский химик и инженер Стивен Кистлер, который известен как изобретатель аэрогеля.

Созданная с помощью 3D печати макроструктура аэрографена придает ему уникальные механические свойства, при этом материал не теряет своей «графеновой» природы. Фото: Ryan Chen/LLNL
Аэрогели представляют собой удивительно легкие материалы, обладающие к тому же заметной прочностью. Так, кубик аэрогеля может выдерживать на себе вес, в тысячу раз превышающий его собственный. Фото: Kevin Baird/Flickr
В 2013 году химики создали аэрографен – на сегодняшний день самый легкий из известных твердых материалов. Его вес в восемь раз меньше веса воздуха, который занимает тот же объем. Фото: Imaginechina/Corbis

Наверное, у большинства читателей первая ассоциация со словом «гель» связана с каким-нибудь косметическим средством или бытовой химией. Хотя на самом деле гель – это вполне химический термин, которым называют систему, состоящую из трехмерной сетки макромолекул, своего рода каркаса, в пустотах которого находится жидкость. За счет этого молекулярного каркаса тот же гель для душа не растекается по ладони, а принимает осязаемую форму. Но назвать такой обычный гель воздушным никак нельзя – жидкость, которая составляет большую его часть, почти в тысячу раз тяжелее воздуха. Вот тут у экспериментаторов и возникла идея, как сделать ультралегкий материал. 

Если взять жидкий гель, и каким-то способом убрать из него воду, заменив ее на воздух, то в результате от геля останется только каркас, который будет обеспечивать твердость, но при этом практически не иметь веса. Такой материал и получил название аэрогеля. С момента его изобретения в 1930 году среди химиков началось своего рода соревнование по созданию самого легкого аэрогеля. Долгое время для его получения использовали в основном материал на основе диоксида кремния. Плотность таких кремниевых аэрогелей составляла от десятых до сотых долей грамма на кубический сантиметр. Когда в качестве материала стали использовать углеродные нанотрубки, то плотность аэрогелей удалось уменьшить еще практически на два порядка. Например, аэрографит имел плотность 0,18 мг/см3. На сегодняшний день пальма первенства самого легкого твердого материала принадлежит аэрографену, его плотность всего 0,16 мг/см3. Для наглядности, метровый куб, сделанный из аэрографена, весил бы 160 г, что в восемь раз легче воздуха.

Однако химиками движет отнюдь не только спортивный интерес, и графен в качестве материала для аэрогелей стали использовать совсем не случайно. Сам по себе графен обладает массой уникальных свойств, которые во многом обусловлены его плоской структурой. С другой стороны, аэрогели тоже имеют особенные характеристики, одна из которых – огромная площадь удельной поверхности, которая составляет сотни и тысячи квадратных метров на грамм вещества. Такая огромная площадь возникает из-за высокой пористости материала. Совместить специфические свойства графена с уникальной структурой аэрогелей у химиков уже получилось, но исследователям из Ливерморской национальной лаборатории для создания аэрографена зачем-то понадобился еще и 3D принтер.

Для того чтобы напечатать аэрогель, сперва потребовалось создать специальные чернила на основе оксида графена. Помимо того, что из них должен получится аэрографен, надо, чтобы такие чернила были пригодны для 3D печати. Решив эту задачу, химики получили в свои руки метод, по которому можно изготавливать аэрографен с нужной микроархитектурой. Это очень важно, поскольку кроме свойств, присущих графену, такой материал будет иметь еще и интересные физические свойства. Например, тот образец, который получили авторы исследования, оказался на удивление упругим – кубик из аэрографена можно было без вреда для материала сжимать в десять раз, при этом он не терял своих свойств при повторных сжатиях-растяжениях.

Способность к многократному сжатию отличает напечатанный аэрографен от полученного «обычным» путем. Одним из практических применений нового аэрографена могут стать гибкие электрические аккумуляторы, где большая внутренняя поверхность материала будет использована в качестве электрода, в то время как напечатанная структура придаст ему нужную гибкость.

Фото: Ryan Chen/LLNL, Kevin Baird/Flickr, Imaginechina/Corbis

По материалам Nature Communications и  LLNL

Автор: Максим Абаев


Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее