№12 декабрь 2024

Портал функционирует при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций.

Генетические мутации: что нормально для мухи, то человеку – смерть

Почему одни и те же мутации в разных организмах срабатывают по-разному.

Гены и белки у разных видов живых существ часто очень похожи по строению и функциям, и можно было бы ожидать, что неблагоприятная мутация, попав в такой белок, окажется одинаково плохой для любого «владельца» этого белка, будь он человек или мышь. Но, когда исследователи из Университета Дьюка вместе с коллегами из Гарварда сравнили присутствие или отсутствие таких мутаций в сотне геномов, включая человеческий, то оказалось, что одни и те же погрешности в ДНК могут вызывать у человека серьёзные болезни и одновременно никак не вредить животным.

Хромосомы человека. (Фото Peter Lansdorp / Visuals Unlimited / Corbis.)
Растительная клетка перед делением, хромосомы выстроились в центре, готовясь разойтись по дочерним клеткам. (Фото David Spears FRPS FRMS / Corbis.)

На самом деле похожие работы выполнялись и раньше, правда, не на таком обширном материале. У теории эволюции есть вполне удовлетворительное объяснение того, почему одна и та же мутация у разных видов приводит к разным последствиям: неблагоприятные модификации могут быть сбалансированы, «забуферированы» другими мутациями, которые у одних видов есть, а у других нет. С одной стороны, буферный механизм может срабатывать в пределах того же самого гена, в который попала плохая мутация.

Как известно, особенности функционирования молекул белков зависят от того, какую объёмную конфигурацию приобрела полипептидная цепь. Конфигурация зависит от аминокислотной последовательности, зашифрованной в гене, и, если в гене произошла замена, то и вместо одной аминокислоты в белке может оказаться другая, из-за которой правильная пространственная укладка уже не получится. Но в аминокислотной последовательности белка могут произойти и другие замены, которые станут чем-то вроде «подпорок» для функциональной структуры молекулы. С другой стороны, компенсация может происходить за счёт множества мутаций в других участках генома: пусть какой-то белок начал работать плохо, но зато мы сбалансируем его плохую работу, оптимизировав другие белки.

В статье в Nature Николас Катцанис (Nicholas Katsanis) и его коллеги описывают, как им удалось подтвердить существование буферного механизма. Они смогли проследить судьбу одних и тех же неблагоприятных мутаций у разных видов: если у такой мутации была поддержка, она сохранялась, если нет – вид быстро терял такой вариант белка. В более строгой формулировке это выглядит так: в каждом следующем поколении в живых оставались те особи, у которых плохая мутация или была сбалансированной, или же просто исчезала. Если она так и оставалась одна, без буферного механизма, то она сильно ухудшала жизнь её владельцу, и особь с мутацией гибла из-за неприспособленности к среде, будучи не в состоянии оставить достаточное количество потомков.

Авторам работы удалось даже создать модель, которая позволяла предсказывать, в каком месте у гена должны появиться компенсирующие модификации для той или иной неблагоприятной мутации. Подчеркнём, что речь здесь идёт только об изменениях в том же самом гене; ситуацию, когда компенсация может происходить за счёт изменений во множестве других участках генома, исследователи подробно не рассматривали.

Полученные результаты ещё раз говорят о том, что не стоит оценивать мутации (или их отсутствие) в чёрно-белом свете, даже если речь идёт об однозначно неблагоприятных дефектах ДНК. Их эффект может сильно зависеть от контекста, и особенно об этом следует помнить, когда мы изучаем человеческие мутации, перенося их в модельные организмы – оказавшись в новом окружении, мутация способна повести себя не так, как у организма-«хозяина».

Более того, даже у двух разных людей одна и та же мутация может проявиться по-разному. Во-первых, в нашей ДНК есть индивидуальные отличия, погрешности в генетическом коде, которые есть только у конкретного индивидуума и больше ни у кого. Сами по себе они оказываются часто совершенно нейтральными, но зато могут создавать пресловутый контекст. В ещё одной недавней статье, опубликованной в The American Journal of Human Genetics, говорится, что примерно из ста людей с болезнетворными мутациями около 40% будут вполне здоровы, как по субъективным ощущениям, так и по клинической картине.

Для генетиков всё это не новость: в обычных школьных учебниках можно найти описание того, от чего зависит проявление гена в фенотипе, то есть во «внешнем признаке» (например, в виде болезни, цвета глаз, роста и т. д.). Во-первых, гены обычно присутствуют у нас в двух копиях, материнской и отцовской, и смертельная мутация в одной из них может быть сбалансирована вполне здоровым вторым экземпляром. Кроме того, многие гены присутствуют в геноме более чем в двух копиях, и проявление признака, который такой ген контролирует, зависит от того, сколько из них находятся в работоспособном состоянии. Во-вторых, то, что мы называем признаком, может определяться работой сразу нескольких генов, и для того, чтобы признаку «стало плохо», нужно испортить несколько его генетических составляющих. В-третьих, разные гены, имеющие отношение к разным признакам, влияют друг на друга – это явление называют эпистаз, и как раз он может работать тогда, когда имеет место «забуферивание» плохой мутации другими генами. Список механизмов, определяющих эффект от мутации и от гена вообще можно продолжить, и чем больше мы будем знать о них, тем понятней будет нам, как бороться с заболеваниями, начинающимися с повреждений ДНК.

Автор: Кирилл Стасевич


Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее