№12 декабрь 2024

Портал функционирует при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций.

Нобелевскую премию по физике вручили за открытие осцилляций нейтрино

Нобелевскую премию поделили канадец Артур Макдональд и японец Такааки Кадзита, экспериментально доказавшие взаимное превращение разных видов нейтрино, что означает наличие у них массы.

В 2015 году Нобелевский комитет снова повернулся лицом к физике элементарных частиц. В этот раз Нобелевская премия вручена физикам, внесшим значительный вклад в решение одной из самых интересных и значительных проблем второй половины XX века, связанной с нейтрино. Несмотря на более чем полувековую историю исследований этих частиц, у ученых остается к ним еще много вопросов. А эти частицы представляют большой интерес для современной физики. С одной стороны информация о них нужна для уточнения теории, описывающей микромир, так называемой Стандартной модели, с другой стороны с ними связывают поиски новой физики. 

Такааки Кадзита, в настоящее время директор Института изучения космических лучей и сотрудник Токийского университета
Артур Макдональд, Королевский университет (Кингстон, Канада)
Схема эксперимента Супер-Камиоканде по обнаружению атмосферных нейтрино.
Детектор Супер-Камиоканде находится на дне шахты глубиной 1км и представляет собой цистерну, вмещающую 50 тысяч тонн воды. На ее стенах размещены более 11000 фотоумножителей, регистрирующих черенковское излучение.
Схема эксперимента в Нейтринной обсерватории Садбери по исследованию солнечных электронных нейтрино.
Детектор Нейтринной обсерватории Садбери, содержащий 9500 световых датчиков.

Общеизвестно очень слабое взаимодействие нейтрино с веществом. Они могут пройти сквозь Землю или Солнце, не потревожив ни один атом. Более того, они так могут пройти через миллиарды звезд. С одной стороны это затрудняет их регистрацию и измерение характеристик, а с другой делает источником важнейшей информации об эволюции Вселенной и процессах происходящих внутри звезд. Ученые также полагают, что нейтрино могут играть ключевую роль в объяснении асимметрии материи и антиматерии во Вселенной, заключающейся в том, что после Большого Взрыва не произошло полной взаимной аннигиляции материи и антиматерии, а часть материи все же уцелела и сформировала нашу Вселенную.

Одна из проблем, связанных с нейтрино, – это проблема их массы. Долгое время предполагалось, что нейтрино не имеет массы. Именно так они рассматривались в первоначальном варианте Стандартной модели. Решение этого вопроса важно не только для понимания физики элементарных частиц. Нейтрино порождаются ядерными реакциями, происходящими во Вселенной, и после фотонов это самые распространенные в ней частицы. Их число огромно. Каждую секунду через квадратный сантиметр проходят более 60 млрд нейтрино. Так что даже при очень малой собственной массе общая масса всех нейтрино может быть очень велика и может влиять на эволюцию Вселенной. По современным оценкам масса всех нейтрино примерно равна массе всех видимых звезд во Вселенной.

Еще одна проблема возникла при определении количества электронных нейтрино, приходящих на Землю от Солнца. С 1970-х годов эксперименты регистрировали всего одну треть от предсказанного теорией их количества. Это назвали дефицитом числа электронных нейтрино. Для объяснения явления было выдвинуто два десятка предположений, из которых победила гипотеза так называемых нейтринных осцилляций (колебаний). В ней предполагалось, что электронные нейтрино на пути от Солнца превращались в другие типы нейтрино, которые не регистрировались в экспериментах. Интересно, что идею осцилляций элементарных частиц высказал советский академик Бруно Понтекорво еще в 1957 году. Серьезно об осцилляциях нейтрино заговорили во второй половине 1990-х годов. 

В настоящее время известно о трех типах нейтрино, каждый из которых всегда рождается вместе с соответствующим лептоном – электроном, мюоном или тау-лептоном, по которому они и получили свои названия. В соответствии с гипотезой нейтринных осцилляций происходит периодический во времени и пространстве процесс превращения нейтрино друг в друга. Так что в пучке, состоящем изначально только из электронных нейтрино, по мере распространения появляется примесь мюонных и тау-нейтрино с одновременным уменьшением доли электронных. 

Любопытно, что решение этой проблемы оказалось связанным с проблемой массы нейтрино. Дело в том, что осцилляции нейтрино возможны только при наличии у них масс.

Причина этого по современным представлениям в том, что электронное, мюонное и тау-нейтрино являются квантовой смесью трех состояний с разными массами, каждое из которых входит со своей долей. Можно сказать, что электронное, мюонное и тау-нейтрино состоят из трех волн, каждая из которых колеблется со своей частотой и амплитудой. Поэтому, если в начальный момент времени сумма этих волн выглядела как электронное нейтрино, то через некоторое время эти волны сложатся так, что появляется примесь мюонного и тау-нейтрино, что и  измеряют экспериментаторы как дефицит в числе электронных нейтрино. 

Так что физики уже давно полагают, что нейтрино имеют массу, хотя она пока так и не измерена непосредственно. Была даже произведена соответствующая небольшая модификация формул Стандартной модели, не нарушившая ее сути. Но экспериментальные доказательства этого были получены на рубеже XX и XXI веков. Лауреаты нобелевской премии 2015 года японец Такааки Кадзита и  канадец Артур Макдональд как раз и были ключевыми фигурами двух крупных научно-исследовательских групп, исследовавших осцилляции нейтрино. 

В 1998 году были опубликованы результаты японских ученых по осцилляции атмосферных нейтрино, возникающих при взаимодействии космических лучей с ядрами атомов атмосферных газов, полученные в эксперименте Супер-Камиоканде (Super-Kamiokande). Когда нейтрино сталкивается с молекулой воды в баке детектора, рождается быстрая, электрически заряженная частица. Она порождает черенковское излучение, которое измеряется световыми датчиками. Его форма и интенсивность показывают тип нейтрино и откуда оно пришло. Мюоные нейтрино, которые пришли сверху, были более многочисленны, чем те, которые путешествовали по более длинному пути через весь земной шар. Это показывает, что мюонные нейтрино во втором случае превратились в другие типы нейтрино

В 2001 году осцилляции солнечных нейтрино, были доказаны в нейтринной обсерватории в Садбери (SNO – Sudbury Neutrino Observatory). Там реакции между нейтрино и тяжелой водой в баке детектора дали возможность измерить количество, как электронных нейтрино, так и всех трех типов нейтрино вместе. Было обнаружено, что электронных нейтрино меньше, чем ожидалось, в то время как общее количество всех трех типов нейтрино вместе соответствовало ожиданиям. Из этого следовало, что часть из электронных нейтрино превратилась в другие виды нейтрино.

По материалам официального сайта Нобелевского комитета 

Автор: Алексей Понятов


Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее