Портал функционирует при финансовой поддержке Федерального агентства по печати и массовым коммуникациям.

Атомы ядерного топлива выталкивают образующийся при его делении газ

Газ, скапливающийся в ядерном топливе в результате реакций деления, может быстро выходить из него благодаря давлению атомов топлива, вытолкнутых этим газом из кристаллической решётки.

В процессе работы ядерного реактора образуются газообразные продукты деления ядерного топлива, преимущественно газ ксенон. Газовые пузыри, скапливаясь внутри топлива, влияют на многие его свойства. Поэтому при проектировании и использовании реакторов важно знать, насколько быстро газ выходит из топлива. Диффузия (рассеивание) газовых пузырей – одна из важных тем исследований в ядерной энергетике, касающаяся не только эффективности работы реактора, но и радиационной безопасности.

Кристаллическая решетка диоксида урана (серые атомы — уран, красные — кислород), пузырь ксенона – желтые атомы. Черным цветом показаны атомы урана, вытесненные в междоузельные положения.

Несмотря на активную работу в этой области различных научных групп в нескольких странах, полное понимание механизмов диффузии газов в ядерном топливе пока отсутствует. Ярким свидетельством этого факта служит опубликованные в 2019 и 2020 годах работы французских специалистов. Предлагаемая ими модель даёт значения скорости диффузии, которые в десятки раз ниже измеряемых в специальных экспериментах. По сути, их теория не работает. Однако сам факт опубликования подобных противоречивых результатов говорит о высоком интересе к данной проблеме.

Специалисты из МФТИ под руководством заведующего Лабораторией суперкомпьютерных методов в физике конденсированного состояния профессора Владимира Владимировича Стегайлова обнаружили принципиально новый физический механизм сверхбыстрой диффузии газа в ядерном топливе. Они смогли смоделировать перемещение нанопузырей ксенона различной концентрации в диоксиде урана на протяжении огромного по атомным масштабам времени — до трех микросекунд (три миллиарда шагов интегрирования). Это стало возможно благодаря оптимальному использованию суперкомпьютерных мощностей и современных программных кодов. В результате подобных рекордных молекулярно-динамических расчетов удалось непосредственно пронаблюдать броуновское движение пузыря и обнаружить принципиально новый механизм диффузии.

Ранее физики полагали, что чем выше концентрация газа, тем медленнее диффузия, так как газ мешает движению диоксида на поверхности пузыря. Исследователи из МФТИ показали, что при достижении некоторой концентрации газ, благодаря высокому давлению, выталкивает атомы кристаллической решетки в междоузельные положения. Скапливаясь там, эти атомы образуют кластеры, быстро перемещающиеся вокруг пузыря. Пузырь и кластер атомов, периодически подталкивая друг друга, двигаются существенно быстрее, чем пузырь сам по себе. Таким образом, появляется новый эффект — ускорение диффузии самим газом, Это поможет объяснить аномально быстрый выход газа из ядерного топлива и устранит расхождение теории с экспериментом в объяснении этого явления.

Результаты исследования опубликованы в журнале Journal of Nuclear Materials.

Работа выполнена в лаборатории суперкомпьютерных методов в физике конденсированного состояния МФТИ. Исследования лаборатории основаны на совмещении методов квантовой и классической механики, статистической физики и кинетики с вычислительными технологиями. Использование самых современных суперкомпьютеров и постоянное совершенствование численных методов позволяют обеспечить высокую точность расчетов.

По пресс-релизу МФТИ

Автор: Алексей Понятов

Источник: Наука и жизнь (nkj.ru)

Статьи по теме





Портал журнала «Наука и жизнь» использует файлы cookie. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie на вашем устройстве. Подробнее