№11 ноябрь 2024

Портал функционирует при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций.

Аналитическая химия из шпината

Хлорофилл поможет определять концентрацию антибиотика.

Одна из серьёзных угроз человечеству – возрастающая устойчивость болезнетворных микроорганизмов к антибиотикам, так называемая антибиотикорезистентность. Существующие антимикробные препараты становятся неэффективными, а учёные не успевают разрабатывать новые лекарства. Проблема касается не только здоровья людей – больше половины производимых в мире антибактериальных средств приходится на животноводство. В результате антибиотики накапливаются в окружающей среде, попадая в том числе и в продукты питания. Чтобы правильно оценивать масштаб проблемы, нужно уметь определять концентрацию антибиотиков в самых разных природных объектах. Такие методы, разумеется, уже давно существуют, но всегда хочется сделать анализ проще и дешевле.

Хлорофилл из листьев шпината в ряде случаев может заменить дорогостоящие реактивы для определения концентрации некоторых антибиотиков. Фото: Daniella Segura/Flickr.com

Исследователи с кафедры аналитической химии химического факультета МГУ предложили использовать для определения антибиотиков из группы аминогликозидов обычный хлорофилл – зелёный пигмент растений. В качестве примера такого определения в статье, опубликованной в журнале ACS Sustainable Chemistry and Engineering, они определили в моче концентрацию антибиотика неомицина.

Как говорят авторы работы, для такого анализа не требуется никаких предварительных операций, достаточно лишь разбавить анализируемый объект в несколько раз водой и смешать с раствором хлорофилла (его выделяли из замороженного шпината) и противоиона – поверхностно-активного вещества наподобие тех, что входят в состав моющих средств. Сосуд с раствором облучают светом красных светодиодов (наподобие фитоламп для выращивания рассады, но без синего цвета). Измерения проводят в инфракрасном диапазоне, в котором хлорофилл светится при облучении красным светом. Для измерений можно использовать не дорогостоящие приборы, а обычный цифровой фотоаппарат, но с необычным светофильтром – пропускающим только инфракрасный свет.

Может возникнуть вопрос, почему раньше никто не пытался использовать сам хлорофилл как аналитический реагент. Дело в том, что незадолго до выполнения описанной работы авторы обнаружили новый тип нековалентного взаимодействия (агрегации) частиц в растворе.

«Мы собирались получать синтетические рецепторы для лекарственных веществ с использованием цианиновых красителей, получаемых на кафедре медицинской химии под руководством доцента Татьяны Подругиной. Однако всего лишь смешав краситель с некоторыми лекарствами в присутствии поверхностно-активных веществ (ПАВ), мы увидели сигнал – резкое усиление люминесценции. Не сразу удалось понять причины этого явления. Постепенно выяснилось, что мы имеем дело с небезынтересным явлением: разгоранием люминесценции красителя в агрегатах», – рассказал ведущий научный сотрудник кафедры аналитической химии МГУ Михаил Беклемишев.

Вызванная нековалентной агрегацией люминесценция была обнаружена ещё в конце 2000-х годов. Если встречаются два крупных органических иона (один из них может быть лекарственным веществом), и у них есть гидрофобные участки (например, углеводородные цепочки), то в воде эти участки непременно соберутся вместе, как масляная капля, образуя гидрофобные домены. В эти домены встроится краситель, который сам гидрофобный и хорошо чувствует себя в гидрофобном окружении – там он будет светиться при облучении красным светом. Надо заметить, что излучение красителя инфракрасное – это полезно для приложений таких систем к животным и растительным тканям и организмам, которыми красное и ИК-излучение поглощается слабее, чем ультрафиолетовое, синее и зелёное, поэтому можно визуализировать объект на большую глубину. Кроме того, не будет мешать собственная люминесценция тканей.

«Отличие наших систем от описанных выше в следующем, – рассказывает соавтор работы, аспирант кафедры аналитической химии химического факультета МГУ Софья Захаренкова. – Оказалось, не обязательно встречаться двум ионам противоположного знака, чтобы образовался агрегат. Можно использовать так называемую самосборку: вместо одного из ионов ввести ПАВ (причем в низкой концентрации, при которой оно ещё не образует мицелл в растворе). В присутствии лекарства ПАВ собирается в мицеллу, которая и играет роль недостающего противоиона. А дальше всё то же самое: образованные углеводородными «хвостами» ПАВ гидрофобные домены охотно примут краситель, чтобы он смог начать светиться».

В ходе работ с цианинами стало ясно, что хлорофилл принадлежит к той же группе гидрофобных красителей и должен вести себя аналогичным образом в присутствии крупного определяемого вещества (в данном случае – антибиотика неомицина) и подходящего ПАВ. В образующемся агрегате антибиотик – ПАВ – хлорофилл последний должен люминесцировать. Предположения оправдались. Таким образом, сделан шаг к использованию не синтетических, а «зелёных» (во всех смыслах!) реагентов в химическом анализе. Но основное приложение своих систем исследователи видят не в качестве люминесцентных сенсоров, а для визуализации доставки лекарств в живых организмах.

По материалам Пресс-службы МГУ


Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее