№01 январь 2025

Портал функционирует при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций.

Четвертое состояние вещества

В. РЫДНИН.

Тепловая энергия, подводимая к газу, выбивает из оболочек его атомов электроны.
Плазма в природе - молния.
Вот что происходит с газом при нагревании. Сверху вниз: температура незначительная. скорость движения молекул газа еще не позволяет электронным оболочкам разрушаться - свечения нет; температура повышается, появляются свободные электроны и ионизированные атомы - слабое свечение; температура достигла нескольких миллионов градусов. Остаются только свободные электроны и оголенные атомные ядра. Это уже не газ, это раскаленная плазма.
Лавинный разряд в газе ведет к возникновению плазмы.
Плазму «ощупывают» радиоволнами.
Плазма электрической дуги в магнитном поле порождает плазмоиды.

     БЕСЕДЫ ОБ ОСНОВАХ НАУК

     Рис. А. Петрова

     ДРЕВНИЕ греки подарили нам, кроме великолепных произведений искусства, прекрасное по своей наивной простоте представление о строении мира. Они считали, что в основе всех вещей лежат четыре «начала», или «стихии» земля, вода, воздух и огонь.

     Уже во времена Ломоносова стало известно, что первые три из них - всего лишь различные состояния вещества, которые называются соответственно твердым, жидким и газообразным. А огонь?

     Долгое время ученые не выделяли его в самостоятельную форму существования материи. И лишь в последние десятилетия удалось проникнуть в тайны огненного состояния вещества, получившего название плазмы.

     ОТ ТРЕХ СОСТОЯНИЙ - К ЧЕТВЕРТОМУ

     Чтобы понять, чем отличается четвертое состояние от всех остальных, обратимся к «кирпичикам» любого вещества - атомам. Атом каждого вещества состоит из положительно заряженного ядра и оболочки из отрицательно заряженных электронов, движущихся по различным орбитам. Разрушить эту оболочку не просто: силы электрического взаимодействия удерживают электроны на их орбитах.

     ...В солнечный весенний день можно наблюдать, как тает кусок льда на мостовой. Вот лед потемнел, разрыхлился, под ним появилась вода. Затем над водой закурились тоненькие струйки тумана, а спустя небольшое время исчезла и вода - она испарилась.

     В обоих этих превращениях электронная оболочка атомов, входящих в молекулу воды, принимает мало участия. Солнечные лучи, нагревая лед, сначала сообщают его молекулам тепловую энергию, достаточную для того, чтобы разрушить кристаллическую решетку льда. Затем тепловая энергия, переданная молекулам воды, разрывает связи между ними - в результате возникает пар. Поместим его в сосуд и станем нагревать.

     Придется запастись терпением. Прибор показывает пятьсот, тысячу, две тысячи градусов. Мы все еще ничего не замечаем. Но вот при температуре в несколько тысяч градусов в сосуде возникает слабое свечение, которое становится все более ярким по мере дальнейшего повышения температуры.

     Физик скажет, что теперь пары воды перешли в плазменное состояние. А мы и не заметили этого. Но что не видно человеческому глазу, не составляет тайны для чувствительных физических приборов. Они и поведают нам о том, что им удалось «увидеть».

     ПЛАЗМА РОЖДАЕТСЯ

     На что расходуется тепловая энергия, подводимая к сосуду с газом? На увеличение скорости движения молекул. Они все быстрее носятся в сосуде, чаще и энергичнее сталкиваются друг с другом. При этом электронные оболочки их атомов «сотрясаются» сильнее, пока от них не начинают отрываться внешние, наиболее слабо связанные с ядром электроны. Атомы приобретают положительный заряд и становятся ионами.

     Прибор извещает нас: началась ионизация - в газе появились свободные электроны и ионизированные атомы. Температура повышается, и оболочки атомов «трещат по швам». Внутренние электроны стараются выбраться из атома. Но если у самого «выхода» им не поможет новое столкновение, ядро втянет их обратно. При возвращении электроны отдают свою энергию в виде электромагнитного излучения, которое регистрируется прибором. Да мы и сами видим: газ начал светиться.

     При дальнейшем повышении температуры свечение в сосуде постепенно становится ослепительно ярким, нестерпимым для глаз.

     Плазма достигает, если можно так выразиться, идеального состояния: в сосуде остались только свободные электроны и совершенно оголенные ядра атомов.

     Воображаемый термометр, если его поместить в сосуд, показал бы при этом температуру в несколько миллионов градусов.

     ВСЕ НЕ ТАК ПРОСТО

     Мы не оговорились. Воображаемым является не только термометр, но и сам опыт. Нагреть газ до такой температуры совсем не так просто, как, например, вскипятить воду и чайнике.

     Первая лазейка, через которую ускользает подводимая к газу энергия, - это стенки сосуда, которые нагреваются. Даже если сделать их из теплоизоляционного материала, то и в этом случае температуру можно повышать лишь до того момента, пока газ не начнет светиться. Теперь энергия ускользает из газа в виде электромагнитного излучения. Не помогают при этом и зеркальные стенки.

     Очевидно, что энергию в газ надо подводить не тепловым путем. Каким же?

     Наилучшим способом получения плазмы является электрический разряд. В чем его преимущества? Во-первых, все процессы протекают намного быстрее, чем при химической реакции горения. К тому же длительность разряда можно ограничить миллионными долями секунды, а мощность довести до миллионов киловатт. Это важно разряд, позволяет подводить энергию в газ быстрее, чем она ускользает из газа.

     В природе и в быту мы встречаем много примеров электрического разряда в газах. Это молния и вольтова дуга, свечение проводов высокого напряжения и искры в электрической цепи. Но почему электрический ток вообще идет через газы, которые, как известно, являются изоляторами? Вместе с этим вопросом возникает много других, столь же интересных.

     ИОНЫ В КОМНАТЕ.

     ХОЛОДНАЯ ПЛАЗМА

     Оказывается, газ является изолятором, так сказать, только теоретически. Практически же он, хоть и слабо, всегда проводит электрический ток. Кое-кто, вероятно, и не подозревает, что в воздухе, которым мы дышим, находятся ноны. Те самые ионы, которые, казалось бы, могут образовываться лишь при очень высоких температурах. Их появление вызвано действием космических лучей, а также радиоактивных веществ, находящихся в земной коре.

     Правда, этих ионов очень мало, но они и есть та «дорожка», по которой ток входит в газ.

     Однако гость в чужом доме может вести себя по-разному. Если напряжение на электродах невелико, то разряд можно обнаружить лишь при помощи чувствительных приборов - идет слабенький ток, и атомы газа в большинстве остаются нейтральными. Повысим напряжение. Ток увеличится.

     Все больше атомов газа вовлекается в процесс ионизации, пока наконец не возникает лавинный разряд, а с ним и плазменное состояние вещества.

     Мы уже знаем, что для того, чтобы получить плазму, надо разогреть газ до высокой температуры. Но дотроньтесь до лампы дневного света. Не бойтесь обжечься стенки ее совершенно холодные. Между тем ртутный пар в ней светится, а это признак плазмы. Как же так? Дело в том, что в одной и той же плазме могут одновременно существовать несколько разных температур.

     Чтобы понять это, вспомним определение температуры - не житейское, а научное. Температура есть мера средней энергии хаотического движения частиц вещества. Чем больше эта энергия, тем выше температура.

     В ионизируемом газе по меньшей мере три сорта частиц: электроны, ионы и нейтральные атомы. А если имеется смесь газов, то число различных сортов частиц еще больше. Когда газ напревают, то столкновения между его частицами в конце концов приводят к выравниванию энергий движения всех видов частиц в нем, то есть к выравниванию температуры. В плазме устанавливается какая-то средняя температура. Такая плазма называется изотермической.

     Другое дело - ионизация газа электрическим разрядом. Здесь выравнивания энергий не происходит. Когда через газ проходит ток, то электроны, налетая на нейтральные атомы, почти не изменяют энергию их движения, так как очень легки по сравнению с атомами. Зато электроны могут ионизировать и возбуждать атомы, и тогда возникает свечение. Иными словами, средняя энергия электронов выше, чем средняя энергия ионов, а значит, и температура электронов выше, чем у ионов.

     Это неизотермическая плазма. Она существует в лампах дневного света, в которых электронная температура может доходить до десятков тысяч градусов - газ светится. Ионная же температура не превышает комнатной - стенки лампы холодные.

     Выравнять эти температуры можно лишь при очень высоком давлении.

     Плазму изучают в первых трех состояниях - твердом, жидком и газообразном - электрические и магнитные силы глубоко запрятаны в недрах вещества. Они целиком уходят на то, чтобы связывать ядра и электроны в атомы, атомы в молекулы и в кристаллы. Вещество в этих состояниях оказывается в целом электрически нейтральным.

     -Другое дело - плазма.

     Электрические и магнитные силы здесь выступают на первый план и определяют все ее основные свойства.

     Плазма соединяет в себе свойства трех состояний: твердого (металл), жидкого (электролит) и газообразного. От металла она берет высокую электропроводность, от электролита - ионную проводимость, от газа - большую подвижность частиц. И все эти свойства переплетаются так сложно, что плазма оказывается очень трудной для изучения.

    И все-таки ученым удается с помощью тонких физических приборов заглянуть в ослепительно светящееся газовое облако. Их интересует количественный и качественный состав плазмы, взаимодействие ее частей друг с другом.

     До раскаленной плазмы руками не дотронешься. Ее ощупывают с помощью очень чувствительных «пальцев» - электродов, вводимых в плазму. Эти электроды называются зондами. Измеряя силу тока, идущего на зонд, при разных напряжениях, можно узнать степень концентрации электронов и ионов, их температуру и ряд других характеристик плазмы.

     Состав плазмы узнают, беря пробы плазменного вещества. Специальными электродами вытягивают небольшие порции ионов, которые затем сортируют по массам с помощью остроумного физического прибора - масспектрометра. Этот анализ дает возможность узнать также знак и степень ионизации, то есть отрицательно или положительно, однократно или многократно ионизированы атомы.

     Плазму ощупывают также радиоволнами. В отличие от обычного газа плазма их сильно отражает, подчас сильнее, чем металлы. Это связано с наличием в плазме свободных электрических зарядов. До недавнего времени такое радиоощупывание было единственным источником сведений об ионосфере - замечательном плазменном «зеркале», которое природа поместила высоко над Землей. Сегодня ионосфера исследуется также с помощью искусственных спутников и высотных ракет, которые берут пробы ионосферного вещества и «на месте» производят его анализ.

     Плазма - очень неустойчивое состояние вещества.

     Обеспечить согласованное движение всех ее составных частей - весьма нелегкое дело. Часто кажется, что это достигнуто, плазма усмирена, но внезапно по каким-то не всегда известным причинам в ней образуются сгущения и разрежения, возникают сильные колебания, и ее спокойное поведение резко нарушается.

     Иногда же «игра» электрических и магнитных сил в плазме сама приходит на помощь ученым. Эти силы могут образовывать из плазмы тела компактной и правильной формы, названные плазмоидами. Форма плазмоидов может быть очень разнообразной. Здесь и кольца, и трубки, и сдвоенные кольца, и перекрученные шпуры. Плазмоиды довольно устойчивы. Например, если «выстрелить» навстречу друг другу двумя плазмоидами, то они при столкновении отлетят друг от друга, как бильярдные шары.

     Изучение плазмоидов позволяет лучше понять процессы, происходящие с плазмой в гигантских масштабах вселенной. Один из видов плазмоидов - шнур - играет очень важную роль в попытках ученых создать управляемую термоядерную реакцию. Плазмоиды, видимо, будут использованы также в плазменной химии а металлургии.

     НА ЗЕМЛЕ И В КОСМОСЕ

     На Земле плазма - довольно редкое состояние вещества. Но уже на небольших высотах плазменное состояние начинает преобладать. Мощное ультрафиолетовое, корпускулярное и рентгеновское излучение Солнца ионизирует воздух в верхних слоях атмосферы и вызывает образование плазменных «облаков» в ионосфере. Верхние слои атмосферы - это защитная броня Земли, предохраняющая все живое от губительного действия солнечных излучений. Ионосфера - отличное зеркало для радиоволн (за исключением ультракоротких), позволяющее осуществлять земную радиосвязь на далекие расстояния.

     Верхние слон ионосферы не исчезают и ночью слишком разрежена в них плазма, чтобы возникшие днем ионы и электроны успели воссоединиться. Чем дальше от Земли, тем меньше в атмосфере нейтральных атомов, а на расстоянии в полтораста миллионов километров находится ближайший к нам колоссальный сгусток плазмы - Солнце.

     Из него постоянно вылетают фонтаны плазмы - подчас на высоту в миллионы километров, - так называемые протуберанцы. По поверхности перемещаются вихри несколько менее горячей плазмы - солнечные пятна. Температура на поверхности Солнца около 5 500°. Пятен - на 1 000° ниже. На глубине 70 тысяч километров - уже 400 000°, а еще дальше температура плазмы достигает более 10 миллионов градусов. В этих условиях ядра атомов солнечного вещества совершенно оголены. Здесь при гигантских давлениях все время идут термоядерные реакции слияния ядер водорода и превращения их в ядра гелия. Выделяющаяся при этом энергия восполняет ту, что Солнце так щедро излучает в мировое пространство, «отапливая» и освещая всю свою систему планет.

     Звезды во вселенной находятся на разных стадиях развития. Одни умирают, медленно превращаясь в холодный несветящийся газ, другие взрываются, выбрасывая в пространство огромные облака плазмы, которые спустя миллионы и миллиарды лет достигают в виде космических лучей других звездных миров.

     Есть области, где силы притяжения сгущают газовые облака, в них растут давление и температура, пока не создаются благоприятные условия для появления плазмы и возбуждения термоядерных реакций, - и тогда вспыхивают новые звезды. Плазма в природе находится в непрерывном круговороте.

     НАСТОЯЩЕЕ И БУДУЩЕЕ ПЛАЗМЫ

     Ученые стоят на пороге овладения плазмой. На заре человечества величайшим достижением было умение получать и поддерживать огонь.. А сегодня понадобилось создать и сохранить на длительное время другую, гораздо более «высокоорганизованную» плазму.

     Мы уже говорили о применении плазмы в народном хозяйстве: вольтова дуга, лампы дневного света, газотроны и тиратроны. Но здесь «работает» сравнительно негорячая плазма. В вольтовой дуге, например, ионная температура составляет около четырех тысяч градусов. Однако сейчас появляются сверхжаропрочные сплавы, которые выдерживают температуру до 10 - 15 тысяч градусов. Чтобы обрабатывать их, нужна плазма с более высокой ионной температурой. Применение ее сулит немалые перспективы и для химической промышленности, так как многие реакции протекают тем быстрее, чем выше температура.

     До какой же температуры пока удалось разогреть плазму? До десятков миллионов градусов. И это не предел. Исследователи уже находятся на подступах к управляемой термоядерной реакции синтеза, в ходе которой выделяются огромные количества энергии. Представьте себе искусственное солнце. И не одно, а несколько. Ведь они изменят климат нашей планеты, навсегда снимут с человечества заботу о топливе.

     Вот какие применения ожидают плазму. А пока ведутся исследования. Большие коллективы ученых напряженно работают, приближая тот день, когда четвертое состояние вещества станет для нас таким же обычным, как и три остальных.

Читайте в любое время

Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее