В учебнике Сивухин Д. В. Общий курс физики: Учеб. пособие: Для вузов. В 5 т.
Т. П. Термодинамика и молекулярная физика. — 5-е изд., испр. — М.:
ФИЗМАТЛИТ, 2005. - 544 с. описывается такой опыт, поставленный ещё Гей- Люссаком.
«Два медных сосуда А и В одинаковых объемов (рис. 17) были соединены трубкой с краном С. Сосуд А был наполнен воздухом, сосуд В — откачан. При открытии крана С воздух из А устремлялся в В. Гей- Люссак наблюдал, что температура воздуха в А несколько понижалась, а, в В — повышалась.»
[/QUOTE]
[B]ОБЪЯСНЯЮ[/B]
Данный опыт относится к так называемому "расширению газа в пустоту". Его объяснять надо очень аккуратно, поскольку здесь имеется несколько "подводных камней". (Аналогичный опыт проводил Джоуль, который оба сосуда помещал в воду, обнаруживший, что в вода в итоге температуру не изменила.)
1) Следует различать термодинамическое объяснение конечного результата опыта и промежуточных. Дело в том, что классическая термодинамика верна только для очень медленных (так называемых квазистатических) процессов, которые происходят со скоростями, много меньшими тепловой скорости движения молекул. В нашем же случае как только мы откроем кран, газ буквально бросится в пустой сосуд со скоростью порядка тепловой скорости молекул и даже еще быстрее, потому что в газе есть отдельные молекулы, скорость которых намного больше тепловой. А тут термодинамика просто неверна. Процесс неквазистатический. Посмотрим, что будет с точки зрения МКТ.
[B]Напомню, что температура газа определяется средней скоростью молекул. Тогда, в самом начале, сразу после открытия крана, в пустой сосуд В ворвутся больше быстрых молекулы из А, чем медленных. В результате средняя энергия молекул и температура в В будет выше исходной в сосуде А; а сосуде А, который потерял эти самые быстрые молекулы, будет температура ниже, чем исходная. Вот этот момент и зафиксировал Гей-Люссак.[/B]. Собственно, на этом можно было бы закончить объяснение, однако надо объяснить фразу Сивухина, что понижение температуры связано и с работой. Об этом подробно ниже.
2) Важный момент, после установления равновесия Гей-Люссак и Джоуль выяснили, что температура станет опять той-же, что и в начале в А. Гей-Люссак на это внимания не обратил, а вот Джоуль из этого вывел закон своего имени : "Внутренняя энергия газа не зависит от объема". Термодинамика [I][B]идеального [/B][/I]газа очень просто объясняет этот эффект. Записываем первый закон термодинамики. Количество теплоты Q, подведенное к газу, идет на увеличение его внутренней энергии ΔU и на работу по расширению А:
Q = ΔU + A
Q = 0 - процесс адиабатический из-за быстроты
А = 0 - газ расширяется в пустоту не встречая сопротивления
Следовательно ΔU = 0, а значит Т1 = Т2.
3) Однако, [B]еще более важный момент![/B] Опыты Джоуля и Гей-Люссака дают неверный конечный результат из-за низкой точности (теплоемкость сосудов значительно больше теплоемкости газа). На самом деле работа при расширении газа в пустоту для реальных газов не равна 0. Дело в том, что у реальных газов, в отличие от идеального, имеется взаимодействие между молекулами. Поэтому при расширении реального газа необходимо совершить работу по раздвиганию молекул на большее среднее расстояние. Поскольку тепло не подводится, то работа по раздвиганию молекул происходит за счет их кинетической энергии.[B] В результате этой работы средняя кинетическая энергия молекул и температура газа уменьшаются[/B]. Вот об этом и говорит Сивухин, забегая вперед.
Об этом можно прочитать в параграфах, посвященных эффекту Джоуля-Томсона (Кельвина), в частности, для реальных газов в разделе про газ Ван-дер-Ваальса. Там сказано о всех нюансах.
В заключение можно сказать, что Сивухин сделал методический недочет, приведя совершенно ненужную информацию о промежуточном повышении температуры в В в опыте Гей-Люссака, но не дав полного объяснения этого. Поскольку совершение работы к этому отношения не имеет.