
Внимание! Данное сообщение содержит исключительно личное мнение автора. Есть основания полагать, что оно может не отвечать критериям научности.
Портал функционирует при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций.
|
03.02.2010 21:01:15
Было бы удобнее работать в определенной теме, когда посреди многоточия в перечислении страниц темы было бы окошечко, в которое можно вписать номер искомой страницы. В настоящее время попасть на определенную страницу темы весьма затруднительно.
![]()
Важно совершенствовать математику.
Внимание! Данное сообщение содержит исключительно личное мнение автора. Есть основания полагать, что оно может не отвечать критериям научности. |
|
|
|
|
03.02.2010 10:54:56
Важно совершенствовать математику.
Внимание! Данное сообщение содержит исключительно личное мнение автора. Есть основания полагать, что оно может не отвечать критериям научности. |
|||
|
|
|
03.02.2010 20:39:40
![]()
Важно совершенствовать математику.
Внимание! Данное сообщение содержит исключительно личное мнение автора. Есть основания полагать, что оно может не отвечать критериям научности. |
|||
|
|
|
03.02.2010 13:43:59
CASTRO,
Для того, чтобы цитировать высказывание нужно его выделить и нажать кнопку "цитировать", которая находится в цитируемом топике снизу справа. Если нужно упомянуть просто автора цитируемого или сослаться на него нужно нажать кнопку "имя", которая находится вверху справа в цитируемом посте. А, вообще, неплохо было бы администрации вывесить на видном месте технические правила пользования процессом общения на форуме.
Изменено:
Алексей Трофимов - 03.02.2010 13:49:12
Важно совершенствовать математику.
Внимание! Данное сообщение содержит исключительно личное мнение автора. Есть основания полагать, что оно может не отвечать критериям научности. |
|
|
|
|
03.02.2010 20:06:59
В этом смысле я и использую это понятие, расхождение или схождение. Дивергенция подобна понятию градиент. Если последнее можно понимать как изменение параметра поля в проекции на плоскость, то дивергенция это изменения в объеме, схождение или расхождение поля к точке объема. Многие поля в мегамасштабах имеют "точечный" источник (гравитационные, магнитные) и, следовательно, возможно применение понятия дивергенция для их характеристики.
Очевидно, что их "нет", поля, преимущественно, неоднородны.
Этим высказыванием мной подчеркивалось, что понятие потенциал включает в себя операцию дифференцирования, в форме определения градиента параметра поля. Это мое собственное суждение.
Согласен. Для строгости суждения, должен определяться либо математический, либо физический параметр.
Важно совершенствовать математику.
Внимание! Данное сообщение содержит исключительно личное мнение автора. Есть основания полагать, что оно может не отвечать критериям научности. |
|||||||||
|
|
|
03.02.2010 14:48:56
Изменено:
Алексей Трофимов - 03.02.2010 14:50:36
Важно совершенствовать математику.
Внимание! Данное сообщение содержит исключительно личное мнение автора. Есть основания полагать, что оно может не отвечать критериям научности. |
|||||
|
|
|
03.02.2010 08:09:34
Изменено:
Алексей Трофимов - 04.02.2010 17:54:28
Важно совершенствовать математику.
Внимание! Данное сообщение содержит исключительно личное мнение автора. Есть основания полагать, что оно может не отвечать критериям научности. |
|||||
|
|
|
02.02.2010 23:03:26
Важно совершенствовать математику.
Внимание! Данное сообщение содержит исключительно личное мнение автора. Есть основания полагать, что оно может не отвечать критериям научности. |
|||||||
|
|
|
02.02.2010 19:53:57
Валерий Пивоваров,
Речь идет просто о логической ошибке в определениях, о тавтологии, так как определение потенциала вынужденно включает в себя представление о производной, конкретно о градиенте, как производной в точке, когда акцентируется понятие дифференциала с тем, чтобы можно было подчеркнуть производную, как векторную величину. Следовательно, "градиент потенциала" это масло масленное , производная производной. Такого нет в математике, а, значит, не может быть и в правильной физике.
Изменено:
Алексей Трофимов - 02.02.2010 21:59:57
Важно совершенствовать математику.
Внимание! Данное сообщение содержит исключительно личное мнение автора. Есть основания полагать, что оно может не отвечать критериям научности. |
|
|
|
|
02.02.2010 17:58:52
Вячеслав Ущеко,
"Потенциальное (или безвихревое) векторное поле" является понятием, близким к обсуждаемому, но не находится в прямой связи с последним, так как мы говорим конкретно о "потенциале". Градиент потенциала В атмосферном электричестве — вектор, направленный по нормали к изо-потенциальной поверхности атмосферного электрического поля в сторону возрастания потенциала поля и численно равный производной от потенциала в этом направлении dV/dn. Г. П., взятый с обратным знаком (в сторону убывания потенциала), называется напряженностью электрического поля Если в энциклопедии предсказателей погоды используется такое словосочетание, то это не может означать само по себе его истинность. Понимаете, если мы определяем "потенциал" через представление о градиенте поля, то получается, что эти понятия связаны и нельзя их использовать в одном словосочетании. Здесь логическая ошибка, "типо масло масленное". Понятно?
Изменено:
Алексей Трофимов - 02.02.2010 18:04:11
Важно совершенствовать математику.
Внимание! Данное сообщение содержит исключительно личное мнение автора. Есть основания полагать, что оно может не отвечать критериям научности. |
|
|
|