№10 октябрь 2024

Портал функционирует при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций.

Выбрать дату в календареВыбрать дату в календаре

Страницы: Пред. 1 ... 65 66 67 68 69 70 71 72 73 74 75 ... 747 След.
Математика как метод познания в гносеологии, Обзор темы
[QUOTE]Это еще что за зверь, откуда он у вас взялся и откуда вдруг следует его предполагаемая дискретность?[/QUOTE]
Если мы рассматриваем общие числа, как расширение для вещественных, то последние являются дискретными в виду этого.
[QUOTE]под знаком интегрирования в лучшем случае должен стоять полный дифференциал dr, а не частный как у вас. Частный не пишут никогда, потому что это в корне неверно, это глупейшая ошибка[/QUOTE]
Частный здесь по направлению, то есть это полный, но вне декартовой системы координат, когда частный означает дифференциал по одной из осей. Там ( т.3. стр. 368) приводится соответствующая зависимость между градиентом по направлению и декартовым выражением.
[QUOTE]левая часть у вас заведомо не может быть равной правой.[/QUOTE]
В чём, собственно,  ошибка? Неправильно составлен дифференциал?
[QUOTE]что у вас за бредовая мешанина из векторных величин под интегралом? Такой комбинации векторных величин и операторов в подобном выражении заведомо быть не может, это ошибка.[/QUOTE]
Составные части подынтегрального выражения векторы. Как производная [I][B]gradP[/B][/I], так и дифференциал аргумента [I][B]∂r[/B][/I]. Подынтегральное выражение (дифференциал) определяет элементарный уровень значения, интегрируя получаем исходное поле.
Хорошо, что Вас не будет в аттестационной комиссии при моей защите, если она когда-то состоится. :) Хотя,  Вы очень полезный оппонент.
Изменено: Алексей Трофимов - 16.02.2022 09:57:44
Математика как метод познания в гносеологии, Обзор темы
[QUOTE]BETEP IIEPEMEH пишет:
Значение чего? Предел чего? Трофимов, давайте нормальные определения[/QUOTE]
В виду предполагаемой дискретности чисел величины [I][B]Т[/B][/I], обычные определения предела для континуальной математики не годятся. Здесь можно говорить примерно следующее: Если существует переменная [I][B]х[/B][/I] на поле [I][B]Х[/B][/I], то известное значение [I][B]x0[/B][/I] отличается от соседнего на величину дискретности и определено, как значение, кратное [I][B]Т[/B][/I].
[QUOTE] ВЕТЕР IIEPEMEH пишет:
Что за уровень такой? Уровень чего?[/QUOTE]
Уровень  дискретного значения, кратного величине [I][B]Т[/B][/I].
Это слой постоянного значения на поверхности уровня в виду рассматриваемой аксиомы о пределе определимости. Это же касается конкретного значения [I][B]х0[/B][/I], когда речь идёт об объёме постоянного значения вокруг точки величины [I][B]Т[/B][/I].
[QUOTE]ВЕТЕР IIEPEMEH пишет:
В этой записи у вас вообще всё неправильно.[/QUOTE]
Вы бы объяснили свою позицию.
Изменено: Алексей Трофимов - 27.08.2022 15:19:16
Математика как метод познания в гносеологии, Обзор темы
[QUOTE]BETEP IIEPEMEH пишет:
сначала дайте определение своего предела определимости[/QUOTE]
Принимаем это за аксиому: Точность определения значения не может превысить предел.
В смысле, существует мера между параметром и полем его распространения.
[QUOTE]BETEP IIEPEMEH пишет:
Какого такого уровня? Вы об уровнях еще и близко не обмолвились, напишите сначала, о чем вообще речь.[/QUOTE]
Аналитическое определение уровня дано выше  в соответствии с классическим в виде подынтегрального выражения  [I][B]P = ∫gradP∂r[/B][/I]
Изменено: Алексей Трофимов - 05.02.2022 16:57:44
Математика как метод познания в гносеологии, Обзор темы
[QUOTE]Владимир пишет:
Раскройте свои исходные тезисы и обоснуйте проще [/QUOTE]
Да чего уж проще - [I]предел определимости[/I]? Другое дело, как к этому относиться?
Изменено: Алексей Трофимов - 04.10.2021 17:41:33
Математика как метод познания в гносеологии, Обзор темы
[QUOTE]BETEP IIEPEMEH пишет:
Известной кому? Уровне чего? Не надо напускать тумана - в математике все должно быть четко и однозначно.[/QUOTE]
Исходя из представления о пределе определимости получаем минимально возможное значение для соответствующего уровня [I][B]T[/B][/I]. Следовательно и максимально возможное [I][B]V[/B][/I], так как эти значения связаны. Значение на уровне постоянное.
[QUOTE]BETEP IIEPEMEH пишет:
Формулы пишут для общего случая, и в общем случае никакого радиального направления там нет.[/QUOTE]
Предложенная формула для уровня общая. Просто, направление обозначено буквой [I][B]r[/B][/I]
Изменено: Алексей Трофимов - 04.10.2021 17:20:34
Математика как метод познания в гносеологии, Обзор темы
[QUOTE]Ваши слова о векторном анализе?[/QUOTE]
Но не о векторных полях как таковых.
Изменено: Алексей Трофимов - 03.10.2021 17:44:05
Математика как метод познания в гносеологии, Обзор темы
[QUOTE]Нет. Понятие уровня вводится для скалярного поля, а для векторного поля вместо уровней вводятся кривые с касательными векторами.[/QUOTE]
Где я говорил именно про векторные поля? Давайте, не будем флудить!
Математика как метод познания в гносеологии, Обзор темы
[QUOTE]Вы не говорили о векторном анализе.[/QUOTE]
Понятие уровня определяется в соответствии с векторным анализом по Фихтенгольцу.
Изменено: Алексей Трофимов - 03.10.2021 16:43:47
Математика как метод познания в гносеологии, Обзор темы
[QUOTE]Olginoz пишет:
Нет там никакого термина "плотности значения"[/QUOTE]
Я этого не говорил. Имелось в виду, что с этой страницы раскрывается векторный анализ.
Математика как метод познания в гносеологии, Обзор темы
[QUOTE]Техник пишет:
Могу предположить, что под "плотностью значений" Трофимов имеет в виду  количество значений какого-то дискретного параметра, отнесенное к величине интервала, в котором эти значения имеют место быть.[/QUOTE]
Речь идёт о величине значения на уровне.
Страницы: Пред. 1 ... 65 66 67 68 69 70 71 72 73 74 75 ... 747 След.
Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее