№01 январь 2025

Портал функционирует при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций.

Выбрать дату в календареВыбрать дату в календаре

Страницы: Пред. 1 ... 76 77 78 79 80 81 82 83 84 85 86 ... 748 След.
Математика как метод познания в гносеологии, Обзор темы
Уважаемые!
Таким образом, здесь записываем [I][B]sinα=y'cosα,[/B][/I] что равносильно [I][B]Dy=y'Dx[/B][/I]. То есть, соотношения сторон определяются только тригонометрией. В связи с этим усматриваем, что само понятие размера точки, дискретности значения в вещественном смысле, как предельного уровня общих чисел, следует из представления о сверхтрофионе, имеющем минимально возможный в природе размер.
Но сверхтрофион - это волновой комплекс, имеющий Фурье-распределения значений. То есть, та же тригонометрия, описывающая структуру уровней, в данном случае вещественного. Поскольку определена тригонометрическая связь между сторонами треугольника, то есть, между [I][B]Т, Dx,Dy,[/B][/I] то она, предположительно, существует и на более глубоком уровне. В смысле, если [I][B]Т[/B][/I] имеет структуру Фурье и дискретные значения, то и связанные с ним стороны должны иметь подобную структуру. Следовательно, существуют соответствующие решения, удовлетворяющие заданным условиям. Иными словами, соотношение [I][B]Dx[/B][/I] и [I][B]Dy[/B][/I] и соответственно изменения функции, производной являются дискретными.
В таком случае, становится возможным применение гармонического анализа к самим основам, анализу функций.
Несмотря на то, что мной рассматривается структура указанных объектов, тем не менее, речь идёт о конкретных величинах одного порядка. В то время как, в известном понятие производной получается при помощи бесконечно малой величины высшего порядка по сравнению с определённым приращением, поскольку последнее устремляется к нулю.
Изменено: Алексей Трофимов - 04.07.2021 20:22:43
Математика как метод познания в гносеологии, Обзор темы
Уважаемые!
Поскольку здесь мы имеем дело со вполне определённым треугольником [I][B]ABC[/B][/I], в виду понятия[I] величина дискретности значения[/I] [I][B]Т[/B][/I], постольку применимы все тригонометрические соотношения. Следовательно, угол [I][B]α[/B][/I], характеризующий производную, можно выразить не только через тангенс, как принято, но и через синус и косинус. То есть, не только через оба дифференциала сразу [I][B]y'=tg α=Dy/Dx[/B][/I], а через каждый в отдельности. При [I][B]Т=1[/B][/I] получаем [I][B]sin α=Dy[/B][/I], [I][B]cos α=Dx[/B][/I]. Следовательно [I][B]y'=tg α=sinα/cos α=Dy/Dx[/B][/I]. Тогда, например, [B][I]Dy=sin α Dx/cos α[/I][/B]
Это может иметь важное значение в дальнейшем для решения, как теоретических, так и прикладных конкретных задач.
Изменено: Алексей Трофимов - 21.05.2021 18:48:58
Математика как метод познания в гносеологии, Обзор темы
Уважаемые!
Удобно принять [I][B]Т [/B][/I]за единицу, так как возникает функция только между [I][B]Dx[/B][/I] и [I][B]Dy[/B][/I], что имеет важное значение по определению. [I][B]Dy=√1-Dx^2[/B][/I]
Кроме того, в этом случае появляется [I] конкретное соотношение[/I] между анализом и экспериментом, физикой, в виду определения [I][B]Т [/B][/I] как именно длины волны сверхтрофиона, имеющей [I]абсолютное значение[/I]. А также, высвечивается важное значение именно параметра [I]размер[/I] и становится определённой в математическом смысле предлагаемая [U]структура[/U] Фурье [I]волнового комплекса[/I], ранее следовавшая только из физики.
Изменено: Алексей Трофимов - 19.05.2021 18:03:57
Мьюзик
Мьюзик
Мьюзик
Мьюзик
Изменено: Алексей Трофимов - 16.05.2021 10:57:32
Мьюзик
Мьюзик
"В кибитке вдохновенья", Стихи и проза
[QUOTE]Павел Чижов пишет:
бойню устроить среди своих[/QUOTE]
И что из того, что в обоих случаях виноваты именно большевики? Дело в нашей позорной слабости!
А что сейчас творится? Хуже чем в 17-м!
Изменено: Алексей Трофимов - 16.05.2021 09:05:11
Страницы: Пред. 1 ... 76 77 78 79 80 81 82 83 84 85 86 ... 748 След.
Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее