[QUOTE]Да какой тут абсолютный проигрыш?
Техник пишет: Я вам уже показывал, какой. Не, я конечно, не утверждаю, что такая ситуация неизбежна, я лишь говорю, что она возможна. Чисто гипотетически. [/QUOTE]Тогда вернёмся к тому, что я говорил: Да, ассиметрия есть.
Но нельзя же это назвать абсолютным проигрышем, ведь никто не получает меньше половины.
[QUOTE]То есть в этом случае старший получает 175 - 100 =75р и картина делится 75р/85р.[/QUOTE]про 85 я чего-то не понял.
[QUOTE]А мог бы получить 180 - 100 = 80р при делении картины ровно пополам, 80/80, если бы позволил делить брату. Ну, это если без зависти (по справедливости). Не, я конечно понимаю, типа "так получилось" и "сам виноват", но мы же всё-таки ищем оптимальное решение, не? То есть такое, когда каждый, сравнив свой кусок со всеми другими, приходит к выводу, что его кусок не хуже любого другого. А тут у брата явно кусок лучше [/QUOTE]Ну так здесь и есть та самая ситуация, когда каждый видит свой кусок ничем не хуже другого. Кто-бы не делил, каждый видит свою тарелку не хуже, чем другая. Почему это у брата тарелка лучше? Это вовсе не явно.
По вашему рассуждать, то и деление пирога абсолютно несправедливо. В самом деле, Делитель не обращает внимания на какие-то вишенки, они ему по-фигу, а Выбирателю вишенка может быть важна и он по разному оценивает предлагаемые ему на выбор куски.
Ну, примем, якобы "А тут у брата явно кусок лучше". Скажем, такое развитие - Младшенький увидел, как старший расстроился и от щедрости душевной предложил: "Ну на, сам выбирай." Ну и что для старшенького? Он опять видит перед собой две равноценные тарелки. Какой у него выбор: выбрать из равноценных по-лучше или сделать их ещё более равноценными?
В общем ситуация такая: Делитель получает один из равноценных кусков/тарелок и они оба именно равноценны, а Выбиратель получает кусок, который получше другого, в том возможном случае, если они для него неравноценны. Причём, неизвестно, этот лучший кусок стоит ли больше, чем один из равноценных по мнению Делителя.
Но, давайте всё-таки, определимся с условиями. Вернее уточним. Никакой объективной, независимой от мнения братьев, цены не существует. Например, возможно такое развитие событий: картина в действительности оказалась ранним Брейгелем старшим и стоит в Кристи мильон. Или внутри куска пирога оказалась золотая монета. Но всё это потом, и заранее неизвестно, как скажется на цене делимого. Это, равно как и любая инсайдерская информация, находится вне условий задачи.
Тогда какая оценка является реальной? Только та, что в момент действия с пирогом или картиной, причем с точки зрения того, кто это действие производит. Когда старший брат уравновешивает тарелки, картина стоит столько, сколько считает старший брат. А потом уже она будет стоить по-другому: на аукционе или, когда младший будет выбирать тарелки.
[QUOTE]Ничего это не значит. Наоборот - говорят, доказано, что деление пирога относится к классу задач PPAD[/QUOTE]Вот буквально, что говорится в последней ссылке про сентябрьское, кажется, решение 2016 года:
[QUOTE]Двое молодых учёных, специалистов в области информатики, придумали, как честно поделить торт между любым количеством людей, решив задачу, над которой математики бились десятилетиями. Их работа удивила многих исследователей, считавших такое разделение невозможным в принципе.
Делёж пирога – это метафора для широкого круга реальных задач, включающих деление некоего непрерывного объекта, будь это торт или надел земли, между людьми, по-разному оценивающими его свойства.[/QUOTE]