№11 ноябрь 2024

Портал функционирует при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций.

Выбрать дату в календареВыбрать дату в календаре

Страницы: Пред. 1 ... 66 67 68 69 70 71 72 73 74 75 76 ... 747 След.
Математика как метод познания в гносеологии, Обзор темы
[QUOTE]Вы не говорили о векторном анализе.[/QUOTE]
Понятие уровня определяется в соответствии с векторным анализом по Фихтенгольцу.
Изменено: Алексей Трофимов - 03.10.2021 16:43:47
Математика как метод познания в гносеологии, Обзор темы
[QUOTE]Olginoz пишет:
Нет там никакого термина "плотности значения"[/QUOTE]
Я этого не говорил. Имелось в виду, что с этой страницы раскрывается векторный анализ.
Математика как метод познания в гносеологии, Обзор темы
[QUOTE]Техник пишет:
Могу предположить, что под "плотностью значений" Трофимов имеет в виду  количество значений какого-то дискретного параметра, отнесенное к величине интервала, в котором эти значения имеют место быть.[/QUOTE]
Речь идёт о величине значения на уровне.
Математика как метод познания в гносеологии, Обзор темы
[QUOTE]BETEP IIEPEMEH пишет:
Распределение всегда у значенИЙ, и плотность всегда у значенИЙ какой-либо функции. У одного значенИЯ плотности быть не может просто в силу самого определения слова плотность, одно значение - это просто некоторая константа, постоянная величина[/QUOTE]
Именно это и имелось в виду. Речь идёт об определённости значения в известной области. Плотность как среднее значение на уровне.
[QUOTE]BETEP IIEPEMEH пишет:
r - это НЕ радиальное направление.[/QUOTE]
В общем случае градиент - это нормаль к поверхности уровня, в частном - радиальное направление.
[QUOTE]BETEP IIEPEMEH пишет:
частная производная по направлению и градиент - это совсем не одно и то же. [/QUOTE]
Напротив, именно идентичные понятия, особенно в данном случае, так как градиент характеризует скорость изменения функции, то есть производную.
[QUOTE]BETEP IIEPEMEH пишет:
Градиент - это вектор, построенный на основе скалярной функции. Производная этой скалярной функции по направлению - это тоже скаляр.[/QUOTE]
Ошибаетесь. Градиент, то есть, вектор и является производной неоднородного скалярного поля и характеризует эту неоднородность, как по величине, так и по направлению в каждой отдельной точке. Следовательно, скалярное поле порождает векторное известного градиента.
[QUOTE]BETEP IIEPEMEH пишет:
Во-первых, это неверно. Во-вторых, то что вы хотели написать, тупо записывается иначе.[/QUOTE]
Объясните подробно.
Изменено: Алексей Трофимов - 03.10.2021 17:10:34
Математика как метод познания в гносеологии, Обзор темы
[QUOTE]BETEP IIEPEMEH пишет:
плотность всегда у значенИЙ какой-либо функции. У одного значенИЯ плотности быть не может просто в силу самого определения слова плотность, одно значение - это просто некоторая константа, постоянная величина.[/QUOTE]
Для уровня.
[QUOTE]BETEP IIEPEMEH пишет:
Градиент - это НЕ частная производная, а вполне конкретная комбинация частнЫХ производнЫХ. [/QUOTE]
Если Вы читали Фихтенгольца по данному вопросу, то должны понимать, что речь идёт о частной производной по направлению, а не по декартовым координатам.
[QUOTE]BETEP IIEPEMEH пишет:
Интеграл так НЕ подсчитывается[/QUOTE]
Поскольку есть производная в дифференциалах, постольку существует интеграл по определению.
Изменено: Алексей Трофимов - 30.09.2021 18:06:18
Математика как метод познания в гносеологии, Обзор темы
[QUOTE] BETEP IIEPEMEH пишет:
Бессмысленное словосочетание.[/QUOTE]
В известном это коррелирует с представлением об обобщённых функциях, когда рассматривается функционал,  распределение значения в окрестностях точки и берётся среднее значение.
Можно сказать, что здесь существует убывающий ряд уровней по средней плотности вокруг точки.
Изменено: Алексей Трофимов - 30.09.2021 12:32:21
Математика как метод познания в гносеологии, Обзор темы
[b]BETEP IIEPEMEH,[/b]
Анализ согласно Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления т.3, стр. 367, но по рассматриваемой аксиоме о существовании плотности значения. Так что всё в рамках классического подхода. Там приводится порядок дифференцирования полей по определённому параметру, которым здесь является плотность значения. Всего лишь!
Выражаясь по-проще, можно сказать, что если мы задаёмся на поле значений понятием неоднородность по плотности, то определённо существуют производная и интеграл, которые подсчитываются по известным формулам.
Изменено: Алексей Трофимов - 29.09.2021 19:28:40
Математика как метод познания в гносеологии, Обзор темы
Уважаемые!
По ходу обсуждения на математическом факультете моей работы, [B]аннотация[/B] приобрела следующий вид:
                                                                       
Мной вводится представление о пределе определимости по плотности значения. В таком ракурсе на математическом поле значений получается градиент как частная производная плотности значения по направлению[I][B] ∂P/∂r = gradP[/B][/I], где [I][B]∂P[/B][/I] – дифференциал значения, [I][B]∂r[/B][/I] – дифференциал направления градиента, [I][B]gradP[/B][/I] – производная. Следовательно, элементарный уровень плотности на поверхности уровня [I][B]P(xyz)=С[/B][/I] выразится: [I][B]∂P = gradP ∂r[/B][/I].
Соответственно, интеграл подсчитывается: [I][B]P = ∫gradP ∂r.[/B][/I]
Поскольку речь идёт о неоднородности в радиальном направлении, то плотность уровней изменяется также через понятие предела определимости. То есть, однородное по плотности поле разбивается на ряд уровней. Элементами этих уровней явятся [I]общие числа[/I], характеризуемые соответствующими дифференциалами [I][B]DP[/B][/I], укладывающиеся в радиальную объёмную структуру, состоящую из соответствующего ряда.
Эти числа соотносятся с комплексными через периодичность [I][B]2πi[/B][/I], вещественными через расширение по уровню плотности, гипервещественными через понятие постоянности для бесконечно малой и большой, так как здесь фигурирует дискретность для вещественных чисел величины [I][B]Т.[/B][/I] Таким образом, [I]общие числа[/I] являются расширением для всех остальных.
В качестве примера применения этого взгляда получаем объяснение парадокса Банаха-Тарского через объёмность рассматриваемых чисел.
Основным выводом работы является представление о существовании [I]общей переменной [/I]и соответствующий анализ.
Изменено: Алексей Трофимов - 10.10.2021 10:37:26
Мьюзик
Мьюзик
Страницы: Пред. 1 ... 66 67 68 69 70 71 72 73 74 75 76 ... 747 След.
Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее